Mammary epithelial cells: Exploring the possibility of developing mammary organoids, artificial mammary glands, and mammary cell lines https://doi.org/10.12982/VIS.2026.031
Main Article Content
Abstract
The mammary gland is a specific mammalian organ that synthesizes biological fluids required for young offspring. Milk is actively synthesized from this gland via mammary epithelial cells (MECs). In addition, breast cancer is the most commonly diagnosed cancer worldwide. The role of MEC as an in vitro model has been accepted to understand the mechanisms of milk synthesis and the biological mechanisms of breast cancer. This review aimed to determine the advantages of using MECs from two different sources: mammary tissue and fresh milk. MECs from mammary tissue contain stem cells that can be reconstituted to the mammary gland. The major MEC population from fresh milk is the epithelial progenitor. Because the in vitro MEC culture can synthesize major milk components; our first hypothesis is that the MEC culture can be enriched and used as a bioreactor to produce artificial milk components. We extended the protein-producing capacity of the MEC culture to pharmaceutical target proteins. This hypothesis based on the presence of intact posttranslation processes in MECs. Studies on breast cancer biology and the development of target cancer therapies require appropriate mammary cell lines. Therefore, this review provides information on the development of mammary cell lines using MECs from animals. We focused on the senescence and transformation of MECs from various mammalian species. These contemporary perspectives are essential for future research to enhance the well-being of the livestock, provide a choice for recombinant proteins, and refine our understanding of breast cancer
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Aggeler, J., Ward, J., Blackie, L.M., Barcellos-Hoff, M.H, Streuli, C.H., Bissell, M.J., 1991. Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J. Cell. Sci. 99, 407-417.
Arévalo Turrubiarte, M., Perruchot, M.H., Finot, L., Mayeur, F., Dessauge, F., 2016. Phenotypic and functional characterization of two bovine mammary epithelial cell lines in 2D and 3D models. Am. J. Physiol. Cell. Physiol. 310(5), C348-C356.
Bachhav, B., de Rossi, J., Llanos, C.D., Segatori, L., 2023. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol. Bioeng. 120(9), 2441-2459.
Bergstraesser, L.M., Weitzman, S.A., 1993. Culture of normal and malignant primary human mammary epithelial cells in a physiological manner simulates in vivo growth patterns and allows discrimination of cell type. Cancer. Res. 53(11), 2644-2654.
Boutinaud, M., Herve, L., Lollivier, V., 2015. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts. Front. Genet. 6, 323.
Bressan, F.F., Bassanezze, V., de Figueiredo Pessôa, L.V., Sacramento, C.B., Malta, T.M., Kashima, S., Fantinato Neto, P., Strefezzi, R.F., Pieri, N.C.G., Krieger, J.E., Covas, D.T., Meirelles, F.V., 2020. Generation of induced pluripotent stem cells from large domestic animals. Stem. Cell. Res. Ther. 11(1), 247.
Cailleau, R., Olivé, M., Cruciger, Q.V., 1978. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro. 14(11), 911-915.
Chaiyabutr, N., Faulkner, A., Peaker, M., 1980. The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo. Biochem. J. 186(1), 301-308.
Choudhary, R.K., Capuco, A.V., 2012. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment. BMC. Cell. Biol. 13, 14.
Coles, C.E., Earl, H., Anderson, B.O., Barrios, C.H., Bienz, M., Bliss, J.M., Cameron, D.A., Cardoso, F., Cui, W., Francis, P.A., Jagsi, R., Knaul, F.M., McIntosh, S.A., Phillips, K.A., Radbruch, L., Thompson, M.K., André, F., Abraham, J.E., Bhattacharya, I.S., Franzoi, M.A., Drewett, L., Fulton, A., Kazmi, F., Inbah Rajah, D., Mutebi, M., Ng, D., Ng, S., Olopade, O.I., Rosa, W.E., Rubasingham, J., Spence, D., Stobart, H., Vargas Enciso, V., Vaz-Luis, I., Villarreal-Garza, C., 2024. The lancet breast cancer commission. Lancet. 403(10439), 1895-1950.
Conner, S.J., Guarin, J.R., Le, T.T., Fatherree, J.P., Kelley, C., Payne, S.L., Parker, S.R., Bloomer, H., Zhang, C., Salhany, K., McGinn, R.A., Henrich, E., Yui, A., Srinivasan, D., Borges, H., Oudin, M.J., 2024. Cell morphology best predicts tumorigenicity and metastasis in vivo across multiple TNBC cell lines of different metastatic potential. Breast. Cancer. Res. 26(1), 43.
Corrò, C., Novellasdemunt, L., Li, V.S.W., 2020. A brief history of organoids. Am. J. Physiol. Cell. Physiol. 319(1), C151-C165.
Diego, C., Martignani, E., Miretti, S., Macchi, E., Accornero, P., Baratta, M., 2014. Bovine mammary epithelial cells retain stem-like phenotype in long-term cultures. Res. Vet. Sci. 97(2), 367-375.
Food and Agriculture Organization of the United Nations, 2023. Dairy Market Review – Overview of global dairy market and policy developments in 2022. FAO, Rome.
Gillis, R.E., Kendall, I.P., Roffet-Salque, M., Zanon, M., Anders, A., Arbogast, R.M., Bogucki, P., Brychova, V., Casanova. E., Classen E., Csengeri, P., Czerniak, L., Domboróczki, L., Fiorillo, D., Gronenborn, D., Hachem, L., Jakucs, J., Ilett, M., Lyublyanovics, K., Lenneis, E., Marciniak, A., Marton, T., Oross, K., Pavúk, J., Pechtl, J., Pyzel, J., Stadler, P., Stäuble, H., Vostrovská, I., van Wijk, I., Vigne, J.D., Balasse, M., Evershed, R.P., 2024. Diverse prehistoric cattle husbandry strategies in the forests of Central Europe. Nat. Ecol. Evol. 9(1), 87-98.
Gilmore, A.P., 2005. Anoikis. Cell Death Differ. 12, 1473-1477.
Gong, C., Bauvy, C., Tonelli, G., Yue, W., Deloménie, C., Nicolas, V., Zhu, Y., Domergue, V., Marin-Esteban, V., Tharinger, H., Delbos, L., Gary-Gouy, H., Morel, A.P., Ghavami, S., Song, E., Codogno, P., Mehrpour, M., 2013. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 32(18), 2261-2272.
Hsieh, C.W., Huang, C., Bederman, I., Yang, J., Beidelschies, M., Hatzoglou, M., Puchowicz, M., Croniger, C.M., 2011. Function of phosphoenolpyruvate carboxykinase in mammary gland epithelial cells. J. Lipid. Res. 52(7), 1352-1362.
Hu, H., Zheng, N., Gao, H., Dai, W., Zhang, Y., Li, S., Wang, J., 2016. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro. Cell. Biol. Int. 40(8), 861-872.
Jamieson, P.R., Dekkers, J.F., Rios, A.C., Fu, N.Y., Lindeman, G.J., Visvader, J.E., 2017. Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development. 144(6), 1065-1071.
Jiménez, J., Page-Peñuelas, A., Ros, M., García-Ruíz, J.P., Moreno, F.J., 1987. Glycerogenic pathway in the rat mammary gland. Int. J. Biochem. 19(2), 201-204.
Keller, P.J., Lin, A.F., Arendt, L.M., Klebba, I., Jones, A.D., Rudnick, J.A., DiMeo, T.A., Gilmore, H., Jefferson, D.M., Graham, R.A., Naber, S.P., Schnitt, S., Kuperwasser, C., 2010. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast. Cancer. Res. 12(5), R87.
Keydar, I., Chen, L., Karby, S., Weiss, F.R., Delarea, J., Radu, M., Chaitcik, S., Brenner, H.J., 1979. Establishment and characterization of a cell line of human breast carcinoma origin. Eur. J. Cancer (1965). 15(5), 659-670.
Kwon, H.C., Jung, H.S., Kothuri, V., Han, S.G., 2024. Current status and challenges for cell-cultured milk technology: a systematic review. J. Anim. Sci. Biotechnol. 15(1), 81.
Lacroix, M., Leclercq, G., 2004. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast. Cancer. Res. Treat. 83(3), 249-289.
Lasfargues, E.Y., Coutinho, W.G., Redfield, E.S., 1978. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl. Cancer. Inst. 61(4), 967-978.
Lee, H.S., Crane, G.G., Merok, J.R., Tunstead, J.R., Hatch, N.L., Panchalingam, K., Powers, M.J., Griffith, L.G., Sherley, J.L., 2003. Clonal expansion of adult rat hepatic stem cell lines by suppression of asymmetric cell kinetics (SACK). Biotechnol. Bioeng. 83(7), 760-771.
Lin, H., 2002. The stem-cell niche theory: lessons from flies. Nat. Rev. Genet. 3(12), 931-940.
Lollivier, V., Lacasse, P., Angulo Arizala, J., Lamberton, P., Wiart, S., Portanguen, J., Bruckmaier, R., Boutinaud, M., 2015. In vivo inhibition followed by exogenous supplementation demonstrates galactopoietic effects of prolactin on mammary tissue and milk production in dairy cows. J. Dairy. Sci. 98(12), 8775-8787.
Machado, H.L., Kittrell, F.S., Edwards, D., White, A.N., Atkinson, R.L., Rosen, J.M., Medina, D., Lewis, M.T., 2013. Separation by cell size enriches for mammary stem cell repopulation activity. Stem. Cells. Transl. Med. 2(3), 199-203.
Menchon, P., Manning, J.K., Swain, D.L., Cosby, A., 2024. Exploration of extension research to promote genetic improvement in cattle production: systematic review. Animals (Basel). 14(2), 231.
Mokbel, K., 2024. Unveiling the complex ecosystem of breast cancer: crucial insights for patients and doctors. Anticancer. Res. 44(8), 3317-3319.
Motyl, T., Gajewska, M., Zarzynska, J., Sobolewska, A., Gajkowska, B., 2007. Regulation of autophagy in bovine mammary epithelial cells. Autophagy. 3(5), 484-486.
Mukhopadhyay, R., Costes, S.V., Bazarov, A.V., Hines, W.C., Barcellos-Hoff, M.H., Yaswen, P., 2010. Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies. Breast. Cancer. Res. 12(1), R11.
Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., Speed, T., Spellman, P.T., DeVries, S., Lapuk, A., Wang, N.J., Kuo, W.L., Stilwell, J.L., Pinkel, D., Albertson, D.G., Waldman, F.M., McCormick, F., Dickson, R.B., Johnson, M.D., Lippman, M., Ethier, S., Gazdar. A., Gray, J.W., 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer. Cell. 10(6), 515-527.
Neville, M.C., McFadden, T.B., Forsyth, I., 2002. Hormonal regulation of mammary differentiation and milk secretion. J. Mammary. Gland. Biol. Neoplasia. 7(1), 49-66.
Olenic, M., Deelkens, C., Heyman, E., De Vlieghere, E., Zheng, X., van Hengel, J., De Schauwer, C., Devriendt, B., De Smet, S., Thorrez, L., 2025. Review: Livestock cell types with myogenic differentiation potential: Considerations for the development of cultured meat. Animal. 19, 101242.
O'Sullivan, E.A., Wallis, R., Mossa, F., Bishop, C.L., 2024. The paradox of senescent-marker positive cancer cells: challenges and opportunities. NPJ. Aging. 10(1), 41.
Pullan, S., Wilson, J., Metcalfe, A., Edwards, G.M., Goberdhan, N., Tilly, J., Hickman, J.A., Dive, C., Streuli, C.H., 1996. Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell. Sci. 109, 631-642.
Qu, J., Kalyani, F.S., Liu, L., Cheng, T., Chen, L., 2021. Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy. Cancer. Commun (Lond). 41(12), 1331-1353.
Qu, Y., Han, B., Yu, Y., Yao, W., Bose, S., Karlan, B.Y., Giuliano, A.E., Cui, X., 2015. Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLoS. One. 10(7), e0131285.
Ramsøe, A., Crispin, M., Mackie, M., McGrath, K., Fischer, R., Demarchi, B., Collins, M.J., Hendy, J., Speller, C., 2021. Assessing the degradation of ancient milk proteins through site-specific deamidation patterns. Sci. Rep. 11(1), 7795.
Reiss, J., Robertson, S., Suzuki, M., 2021. Cell sources for cultivated meat: applications and considerations throughout the production workflow. Int. J. Mol. Sci. 22(14), 7513.
Rosenbluth, J.M., Schackmann, R.C.J., Gray, G.K., Selfors, L.M., Li, C.M., Boedicker, M., Kuike,n H.J., Richardson, A., Brock, J., Garber, J., Dillon, D., Sachs, N., Clevers, H., Brugge, J.S., 2020. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat. Commun. 11(1), 1711.
Rutherford, T.R., Elder, A.M., Lyons, T.R., 2021. Anoikis resistance in mammary epithelial cells is mediated by semaphorin 7a. Cell. Death. Dis. 12(10), 872.
Saipin, N., Noophun, J., Chumyim, P., Rungsiwiwut, R., 2018. Goat milk: Non-invasive source for mammary epithelial cell isolation and in vitro culture. Anat. Histol. Embryol. 47(3), 187-194.
Saipin, N., Semsirmboon, S., Rungsiwiwut, R., Thammacharoen, S., 2020a. High ambient temperature directly decreases milk synthesis in the mammary gland in Saanen goats. J. Therm. Biol. 94, 102783.
Saipin, N., Thuwanut, P., Thammacharoen, S., Rungsiwiwut, R., 2020b. Effect of incubation temperature on lactogenic function of goat milk-derived mammary epithelial cells. In Vitro. Cell. Dev. Biol. Anim. 56(10), 842-846.
Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Lindeman, G.J., Visvader, J.E., 2006. Generation of a functional mammary gland from a single stem cell. Nature. 439(7072), 84-88.
Sharma, M.P., Shukla, S., Misra, G., 2024. Recent advances in breast cancer cell line research. Int. J. Cancer. 154, 1683-1693.
Shea, E.K.H., Koh, V.C.Y., Tan, P.H., 2020. Invasive breast cancer: Current perspectives and emerging views. Pathol. Int. 70(5), 242-252.
Shi, J.H., Cui, N.P., Wang, S., Zhao, M.Z., Wang, B., Wang, Y.N., Chen, B.P., 2016. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS. Open. Bio. 6(1), 33-42.
Soule, H.D., Maloney, T.M., Wolman, S.R., Peterson, W.D. Jr., Brenz, R., McGrath, C.M., Russo, J., Pauley, R.J., Jones, R.F., Brooks, S.C., 1990. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer. Res. 50(18), 6075-6086.
Soule, H.D., Vazguez, J., Long, A., Albert, S., Brennan, M., 1973. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer. Inst. 51(5), 1409-1416.
Souto, E.P., Dobrolecki, L.E., Villanueva, H., Sikora, A.G., Lewis, M.T., 2022. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J. Mammary. Gland. Biol. Neoplasia. 27(2), 211-230.
Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H.I., Eaves, C.J., 2006. Purification and unique properties of mammary epithelial stem cells. Nature. 439(7079), 993-997.
Sutherland, K.D., Lindeman, G.J., Visvader, J.E., 2007. The molecular culprits underlying precocious mammary gland involution. J. Mammary. Gland. Biol. Neoplasia. 12(1), 15-23.
Thammacharoen, S., Chanpongsang, S., Chaiyabutr, N., Teedee, S., Pornprapai. A., Insam-ang, A., Srisa-ard, C., Channacoop, N., 2020. An analysis of herd-based lactation curve reveals the seasonal effect from dairy cows fed under high ambient temperature. Thai. J. Vet. Med. 50(2), 169-178.
Thammacharoen, S., Komolvanich, S., Suwankamjaya, T., Saowakhataphum, M., Chaiyo, N., Chaiyabutr, N., 2002. Glucose transporter I in the mammary tissue during late lactation in crossbred Holstein and Sahiwal cattle. Int. J. Anim. Sci. 17, 39-42.
Thammacharoen, S., Saipin, N., Nguyen, T., Chaiyabutr, N., 2022. Effects of high ambient temperature on milk protein synthesis in dairy cows and goats: insights from the molecular mechanism studies. Available online: https://www.intechopen.com/online-first/81528.
Thompson, B.J., Stern, A., Smith, S., 1981. Purification and properties of fatty acid synthetase from a human breast cell line. Biochim. Biophys. Acta. 662(1), 125-130.
Vikram, R., Chou, W.C., Hung, S.C., Shen, C.Y., 2020. Tumorigenic and metastatic role of CD44-/low/CD24-/low cells in luminal breast cancer. Cancers (Basel). 12(5), 1239.
Waltz, E., 2022. Cow-less milk: the rising tide of animal-free dairy attracts big players. Nat. Biotechnol. 40(11), 1534-1536.
Weeratunga, P., Harman, R.M., Van de Walle, G.R., 2023. Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front. Vet. Sci. 10, 1129287.
Wilson, G.M., Dinh, P., Pathmanathan, N., Graham, J.D., 2022. Ductal carcinoma in situ: molecular changes accompanying disease progression. J. Mammary. Gland. Biol. Neoplasia. 27(1), 101-131.
Wurm, F.M., 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22(11), 1393-1398.
Zhao, F.Q., 2014. Biology of glucose transport in the mammary gland. J. Mammary. Gland. Biol. Neoplasia. 19(1), 3-17.