Digital usage health literacy and correlation with computer vision syndrome (CVS) among personnel working with information technology, Department of Disease Control
Keywords:
Computer vision syndrome (CVS), Health literacy, Digital usageAbstract
Thailand has high level of internet connectivity and a mobile phone usage. Twenty-four million households have vision-related problems. This descriptive research was a cross-sectional study aimed to investigate health literacy levels and their correlation with the prevalence of computer vision syndrome (CVS) among 75 information technology (IT) workers in Thailand. A questionnaire was used as a tool for data collection. Data were analyzed using descriptive statistics such as percentages, mean, and standard deviation, as well as Chi-square tests and multiple regression analysis.
The findings indicated that majority of respondents having more symthomatic exhibited CVS problems, including 47 individuals reporting blurred vision, 21 had difficulty with glare, and 20 experienced dry eyes. It was also found that taking an eye rest for less than 20 minutes and sufficient light at the workplace were negatively related with the occurrence of CVS (p < 0.01). In addition, digital usage health literacy was found to be at a moderate level (50.70%), and decision-making skills were significantly related to CVS, including decision to find risk management strategies (p < 0.01), decision on potential health impact (p < 0.01), and consideration of risk and decision to work further or stop working (p < 0.05). Therefore, health literacy education should be emphasized, specifically on decision-making and communication of digital risks among digital workers, as well as advocating for regular eye checks, and promoting a conducive work environment to mitigate risk among vulnerable groups. These findings shall be used to plan for digital literacy education for organizations in the future.
References
Smith J, Doe E. Exploring the impact of prolonged digital screen use on ocular health: A focus on computer vision yndrome. J Digit Eye Health. 2020; 15(3): 200-210.
Datareportal. Digital 2023: Global overview report [Internet]. 2024 [cited 2024 Jan 30]. Available from: https://datareportal.com/reports/digital-2023-global-overview-report.
ศูนย์วิเคราะห์ข้อมูล สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์ กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. รายงานผลการสํารวจพฤติกรรมผู้ใช้อินเทอร์เน็ตในประเทศไทย ปี 2565 [Internet]. กรุงเทพฯ: สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์; 2565 [เข้าถึงเมื่อ 12 ก.พ. 2567]. เข้าถึงได้จาก https://www.etda.or.th/getattachment/78750426-4a58-4c36-85d3-d1c11c3db1f3/IUB-65-Final.pdf.aspx
World Health Organization (WHO). Global trends in the magnitude of blindness and visual impairment. Prevention of Blindness and Visual Impairment [Internet]. 2023 [cited 2024 Jan 30]. Availiable from: http://www.who.int/blindness/causes/trends/en/.
Akinbinu R. Knowledge of computer vision syndrome among computer users in the workplace in Abuja, Nigeria. J Physiol Pathophysiol. 2013; 4: 58-63.
ปาจรา โพธิหัง. ปัจจัยเสี่ยงของกลุ่มอาการจอภาพคอมพิวเตอร์ ในพนักงานที่ทำงานเกี่ยวข้องกับการจัดเก็บข้อมูลและสารสนเทศ [วิทยานิพนธ์ปริญญาพยาบาลศาสตรมหาบัณฑิต]. ชลบุรี: มหาวิทยาลัยบูรพา; 2550.
Shantakumari N, Eldeeb R, Sreedharan J, Gopal K. Computer use and vision-related problems among university students in ajman, United Arab Emirate. Ann Med Health Sci Res, 4(2):258-21.
American Optometric Association. The Effects of Computer Use on Eye Health and Vision [Internet]. 2020 [cited 2024 Jan 30]. Available from: https://www.slideshare.net/slideshow/effects-ofcomputeruse/239092120
กรมควบคุมโรค. แผนยุทธศาสตร์ชาติระยะ 20 ปีด้านการป้องกันควบคุมโรคและภัยสุขภาพ (พ.ศ.2560 - 2579). กรุงเทพฯ: สำนักพิมพ์อักษรกราฟฟิคแอนด์ดีไซน์; 2560.
Blehm C, Vishnu S, Khattak A, Mitra S, Yee RW. Computer vision syndrome: a review. Surv Ophthalmol. 2005; 50(3): 253-62.
พัชนา เฮ้งบริบูรณ์, พงศ์ ใจดี, วัลลภ ใจดี, จิราภัค สุวรรณเจริญ. ความรอบรู้ด้านสุขภาพของแรงงานชาวกัมพูชาที่ประกอบอาชีพในจังหวัดชลบุรี. วารสารเครือข่ายวิทยาลัยพยาบาลและการสาธารณสุขภาคใต้. 2561; 5(2): 86-93.
Yaacob N, Syamimi M, Abdullah AM, Azmi A. Prevalence of Computer Vision Syndrome (CVS) among undergraduate students of a health-related faculty in a public university. Malaysian J Med Health Sci. 2022; 18(SUPP8): 348-354.
Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophth. 2018; 3: e000146.
Rosenfield M. Computer vision syndrome (a.k.a. digital eye strain). Optometry. 2016; 83(1): 20-24.
Gowrisankaran S, Sheedy JE. Computer vision syndrome: a review. Work. 2015; 52(2): 303-314.
Fang Y, Liu C, Zhao C, Zhang H, Wang W, Zou N. A study of the effects of different indoor lighting environments on computer work fatigue. Int J Environ Res Public Health. 2022; 19(11): 6866.
Oliveira S, Errea M, Bialek J, Kendall M, McCarthy R. The impact of health literacy on shared decision making before elective surgery: a propensity matched case control analysis. BMC Health Services Research. 2018; 18: 958.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sirindhotn College of Public Health Chonburi, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.