The Role of Artificial Intelligence in Chronic Illness Care: Navigating Challenges in Clinical Nursing Practice

Authors

  • Sumarno Adi Subrata Department of Nursing and Wound Study Center, Universitas Muhammadiyah Magelang, Indonesia.

DOI:

https://doi.org/10.60099/prijnr.2025.272061

Keywords:

Artificial intelligence, chronic illness, clinical nursing practice, patient outcomes, preventive strategies

Abstract

Artificial intelligence (AI) is reshaping chronic illness care by providing precise, data-driven insights and fostering proactive management strategies that have the potential to enhance patient outcomes. However, integrating artificial intelligence into clinical nursing practice presents distinct challenges requiring thoughtful navigation to fully realize its benefits. AI tools promise to improve patient monitoring and enable personalized care plans while optimizing nursing workflows. Yet, as nurses work on the front lines of implementing AI, they encounter ethical, practical, and technical challenges, including data privacy and security concerns, balancing patient expectations with technological capabilities, and addressing algorithmic biases that could compromise equitable care. Nurses are crucial in ensuring that AI applications remain patient-centered, advocating for tools that genuinely reflect the diverse needs of patients with chronic illnesses. Maintaining clinical judgment amidst AI-driven recommendations requires careful consideration, as automated insights must be weighed against individualized care needs. This dynamic underscores the need to empower nurses through interdisciplinary collaboration with data scientists, continuous professional development, and resources that support them in managing potential workflow demands increased by AI tools. Moreover, fostering an adaptive, learning-oriented nursing culture is essential to embrace AI’s evolving role in healthcare. Addressing these challenges can harness AI’s full potential to improve patient care and quality of life for individuals managing chronic conditions. Supporting nurses in leading AI adoption will be instrumental in transforming chronic illness care and achieving better long-term outcomes for patients.

References

Singareddy S, Sn VP, Jaramillo AP, Yasir M, Iyer N, Hussein S, et al. Artificial intelligence and its role in the management of chronic medical conditions: a systematic review. Cureus. 2023;15(9):e46066. doi:10.7759/cureus.46066. DOI: https://doi.org/10.7759/cureus.46066

Minghui Y, Hu Y, Lu Z. How do nurses work in chronic management in the age of artificial intelligence? development and future prospects. Digit health. 2023;9:20552076231221057. doi:10.1177/20552076231221057. DOI: https://doi.org/10.1177/20552076231221057

Watson KB, Carlson SA, Loustalot F, Town M, Eke PI, Thomas CW, et al. Chronic conditions among adults aged 18─34 years - United States, 2019. MMWR Morb Mortal Wkly Rep. 2022;71(30):964-70. doi:10.15585/mmwr.mm7130a3. DOI: https://doi.org/10.15585/mmwr.mm7130a3

Hacker K. The burden of chronic disease. Mayo Clin Proc Innov Qual Outcomes. 2024;8(1):112-9. doi:10.1016/j.mayocpiqo.2023.08.005. DOI: https://doi.org/10.1016/j.mayocpiqo.2023.08.005

Thomas SA, Browning CJ, Charchar FJ, Klein B, Ory MG, Bowden-Jones H, et al. Transforming global approaches to chronic disease prevention and management across the lifespan: integrating genomics, behavior change, and digital health solutions. Front in Pub Health. 2023;11:1248254. doi:10.3389/fpubh.2023.1248254. DOI: https://doi.org/10.3389/fpubh.2023.1248254

Rony MKK, Kayesh I, Bala SD, Akter F, Parvin MR. Artificial intelligence in future nursing care: exploring perspectives of nursing professionals - a descriptive qualitative study. Heliyon. 2024;10(4):e25718. doi:10.1016/j.heliyon.2024.e25718. DOI: https://doi.org/10.1016/j.heliyon.2024.e25718

Kurniawan MH, Handiyani H, Nuraini T, Hariyati RTS, Sutrisno S. A systematic review of artificial intelligence-powered (AI-powered) chatbot intervention for managing chronic illness. Ann of Med. 2024;56(1):2302980. doi:10.1080/07853890.2024.2302980. DOI: https://doi.org/10.1080/07853890.2024.2302980

Tarumi S, Takeuchi W, Chalkidis G, Rodriguez-Loya S, Kuwata J, Flynn M, et al. Leveraging artificial intelligence to improve chronic disease care: methods and application to pharmacotherapy decision support for type-2 diabetes mellitus. Meth of Inf in Med. 2021;60(S 01):e32-e43. doi:10.1055/s-0041-1728757. DOI: https://doi.org/10.1055/s-0041-1728757

Wang Z, Yang W, Li Z, Rong Z, Wang X, Han J, et al. A 25-year retrospective of the use of ai for diagnosing acute stroke: systematic review. J of Med Int Res. 2024;26:e59711. doi:10.2196/59711. DOI: https://doi.org/10.2196/59711

Kolla L, Parikh RB. Uses and limitations of artificial intelligence for oncology. Cancer. 2024;130(12):2101-7. doi:10.1002/cncr.35307. DOI: https://doi.org/10.1002/cncr.35307

Seibert K, Domhoff D, Bruch D, Schulte-Althoff M, Fürstenau D, Biessmann F, et al. Application scenarios for artificial intelligence in nursing care: rapid review. J of Med Int Res. 2021;23(11):e26522. doi:10.2196/26522. DOI: https://doi.org/10.2196/26522

Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Edu. 2023;23(1):689. doi:10.1186/s12909-023-04698-z. DOI: https://doi.org/10.1186/s12909-023-04698-z

Mohanasundari SK, Kalpana M, Madhusudhan U, Vasanthkumar K, B R, Singh R, et al. Can artificial intelligence replace the unique nursing role? Cureus. 2023;15(12):e51150. doi:10.7759/cureus.51150. DOI: https://doi.org/10.7759/cureus.51150

Pailaha AD. The impact and issues of artificial intelligence in nursing science and healthcare settings. SAGE Op Nurs. 2023;9:23779608231196847. doi:10.1177/23779608231196847. DOI: https://doi.org/10.1177/23779608231196847

Ronquillo CE, Peltonen LM, Pruinelli L, Chu CH, Bakken S, Beduschi A, et al. Artificial intelligence in nursing: priorities and opportunities from an international invitational think-tank of the nursing and artificial intelligence leadership collaborative. J of Adv Nurs. 2021;77(9):3707-17. doi:10.1111/jan.14855. DOI: https://doi.org/10.1111/jan.14855

McDonald T. Do generative artificial intelligence company strategies of ‘moving fast and breaking things’ in civil society cancel their social licence to operate? A nurse’s evaluation of chatbot impacts. Pac Rim Int J Nurs Res. 2024;28(4):689-706. doi:10.60099/prijnr.2024.268964. DOI: https://doi.org/10.60099/prijnr.2024.268964

Al Kuwaiti A, Nazer K, Al-Reedy A, Al-Shehri S, Al-Muhanna A, Subbarayalu AV, et al. A review of the role of artificial intelligence in healthcare. J of Pers Med. 2023;13(6). doi:10.3390/jpm13060951. DOI: https://doi.org/10.3390/jpm13060951

Hartweg DL, Metcalfe SA. Orem's self-care deficit nursing theory: relevance and need for refinement. Nurs Sci Quart. 2022;35(1):70-6. doi:10.1177/08943184211051369. doi:10.1177/08943184211051369. DOI: https://doi.org/10.1177/08943184211051369

Peplau HE. Peplau's theory of interpersonal relations. Nurs Sci Q. 1997;10(4):162-7. doi:10.1177/089431849701000407. DOI: https://doi.org/10.1177/089431849701000407

Wangpitipanit S, Lininger J, Anderson N. Exploring the deep learning of artificial intelligence in nursing: a concept analysis with Walker and Avant’s approach. BMC Nurs. 2024;23(1):529. doi:10.1186/s12912-024-02170-x. DOI: https://doi.org/10.1186/s12912-024-02170-x

Rothlisberger PN. AI-powered patient-centered care: a call to action for innovation. J of Health Man. 2024;69(4):255-66. doi:10.1097/jhm-d-24-00102. DOI: https://doi.org/10.1097/JHM-D-24-00102

Roy C. Future of the Roy model: challenge to redefine adaptation. Nurs Sci Q. 1997;10(1):42-8. doi:10.1177/089431849701000113. DOI: https://doi.org/10.1177/089431849701000113

Zoppo G, Marrone F, Pittarello M, Farina M, Uberti A, Demarchi D, et al. AI technology for remote clinical assessment and monitoring. J Wound Care. 2020;29(12):692-706. doi:10.12968/jowc.2020.29.12.692. DOI: https://doi.org/10.12968/jowc.2020.29.12.692

Undru TR, Uday U, Lakshmi JT, Kaliappan A, Mallamgunta S, Nikhat SS, et al. Integrating artificial intelligence for clinical and laboratory diagnosis - a review. Maedica. 2022;17(2):420-6. doi:10.26574/maedica.2022.17.2.420.

Benner P, Tanner C, Chesla C. From beginner to expert: gaining a differentiated clinical world in critical care nursing. Adv Nurs Sci. 1992;14(3):13-28. doi:10.1097/00012272-199203000-00005. DOI: https://doi.org/10.1097/00012272-199203000-00005

Raymond L, Castonguay A, Doyon O, Paré G. Nurse practitioners' involvement and experience with AI-based health technologies: a systematic review. Appl Nurs Res. 2022;66:151604. doi:10.1016/j.apnr.2022.151604. DOI: https://doi.org/10.1016/j.apnr.2022.151604

Downloads

Published

2025-02-22

How to Cite

1.
Sumarno Adi Subrata. The Role of Artificial Intelligence in Chronic Illness Care: Navigating Challenges in Clinical Nursing Practice. PRIJNR [internet]. 2025 Feb. 22 [cited 2025 Jun. 19];29(2):213-8. available from: https://he02.tci-thaijo.org/index.php/PRIJNR/article/view/272061

Issue

Section

Editorial

Categories