Development of a Prototype Smart External Ventricular Drainage System
Keywords:
Smart external ventricular drainage, head angle measurement, cerebrospinal fluid volume monitoring, zero-point calibration, digital sensorAbstract
Background: Traditional cerebrospinal fluid (CSF) drainage systems lack precise control and continuous monitoring of drainage volume, increasing the risk of complications from overdrainage or underdrainage. Furthermore, the lack of an automatic alert system for abnormalities forces medical personnel to rely on manual observation and assessment, resulting in limited accuracy and continuity.
Objective: The goal is to develop a prototype of a smart external ventricular drainage system.
Material and methods: This study entailed the creation of a prototype smart external ventricular drainage (Smart EVD) system to evaluate its viability for clinical implementation. The research instruments consisted of (1) materials and components used in the development of the Smart EVD and (2) a feasibility assessment form for evaluating its potential use. Data analysis included a descriptive presentation of the prototype development process and an analysis of the feasibility assessment results using descriptive statistics, namely the mean and standard deviation.
Result: The study successfully created a prototype smart external ventricular drainage system with four main parts: (1) measuring the angle of the head, (2) keeping track of the volume of cerebrospinal fluid, (3) setting a reference point, and (4) an alert system for abnormalities. Five experts evaluated the Smart EVD and found that it was very likely to work in real life (overall mean = 45.80, SD = 4.87).
Conclusion: The developed prototype smart cerebrospinal fluid drainage system demonstrates potential for assisting in the management of patients with hydrocephalus by reducing drainage errors and enhancing patient safety. However, further studies are required to evaluate the system’s accuracy and reliability in laboratory settings before proceeding to clinical testing in accordance with medical device evaluation standards.
References
Bertuccio A, Marasco S, Longhitano Y, Romenskaya T, Elia A, Mezzini G, et al. Barbanera A. External Ventricular Drainage: A Practical Guide for Neuro-Anesthesiologists. Clin Pract. 2023;13(1):219-29.
rand View Research. External Ventricular Drain Market Size & Share Report, 2030 [Internet]. San Francisco (CA): Grand View Research; 2023 [cited 2025 Oct 9]. Available from: https://www.grandviewresearch.com/industry-analysis/external-ventricular-drain-market
Alunpipatthanachai B, Thirapattaraphan P, Fried H, Vavilala MS, Lele AV. External Ventricular Drain Management Practices in Thailand: Results of the EPRACT Study. World Neurosurg. 2019; 126:e743-e752.
Palasz J, D'Antona L, Farrell S, Elborady MA, Watkins LD, Toma AK. External ventricular drain management in subarachnoid haemorrhage: a systematic review and meta-analysis. Neurosurg Rev. 2022;45(1):365-73.
อรุณี หล่อนิล. การพัฒนาเครื่องมือเพื่อเพิ่มประสิทธิภาพการดูแลผู้ป่วยหลังผ่าตัดสมองที่ใส่ External Ventricular Drainage โดยใช้หลักฐานเชิงประจักษ์และนวัตกรรมในหอผู้ป่วยศัลยกรรมหญิง โรงพยาบาลอุทัยธานี. วารสารวิชาการแพทย์และสาธารณสุข เขตสุขภาพที่ 3, 2566;20(4): 234-42.
Sakamoto VTM, Vieira TW, Viegas K, Blatt CR, Caregnato RCA. Nursing assistance in patient care with external ventricular drain: a scoping review. Rev Bras Enferm. 2021;74(2):e20190796.
Ofoma H, Cheaney B 2nd, Brown NJ, Lien BV, Himstead AS, Choi EH, et al. Updates on techniques and technology to optimize external ventricular drain placement: A review of the literature. Clin Neurol Neurosurg. 2022; 213:107126.
ดาราณี นงเยาว์, พิราลักษณ์ ลาภหลาย, และมารศรี ปิ่นสุวรรณ. การพัฒนาแนวปฏิบัติการพยาบาลเพื่อป้องกันภาวะความดันในกะโหลกศีรษะสูงในผู้ป่วยที่มีการระบายน้ำไขสันหลังจากโพรงสมองโรงพยาบาลพระนครศรีอยุธยา. วชิรสารการพยาบาล. 2566;25(2):27–39.
พรจิตร จันทร์เสถียร, รวิภา บุญชูช่วย. นวัตกรรมอุปกรณ์ตั้งระดับจุดหยดน้ำไขสันหลัง “SMART POINT EVD”. วารสารทางการแพทย์ของกองทัพอากาศไทย. 2561;64(3):43-8.
ศุภลักษณ์ ทับทิม, จารุดา คำภิระ, จันทิมา นวะมะวัฒน์. ประสิทธิผลของนวัตกรรม “Phichit Level EVD” ในผู้ป่วยอุบัติเหตุจราจรหลังผ่าตัด ventriculostomy. วารสารโรงพยาบาลพิจิตร. 2566;38(2):23-34.
Yan R, Ye J, Wang J, Wang M. Design and analysis of a magnetic connection device for external ventricular drain. IET Science, Measurement & Technology. 2023;17(2):84-92.
Arts S, van Bilsen M, van Lindert EJ, Bartels RH, Aquarius R, Boogaarts HD. Implementation of an automated cerebrospinal fluid drainage system for early mobilization in neurosurgical patients. Brain Sciences. 2021;11(6):683.
Likert R. A technique for the measurement of attitudes. Archives of Psychology. 1932;140:1–55.
Patil V, Gupta R, San José Estépar R, Lacson R, Cheung A, Wong JM, Popp AJ, Golby A, Ogilvy C, Vosburgh KG. Smart stylet: the development and use of a bedside external ventricular drain image-guidance system. Stereotact Funct Neurosurg. 2015;93(1):50-8.
Ofoma H, Cheaney II B, Brown NJ, Lien BV, Himstead AS, Choi EH, Cohn S, Campos JK, Oh MY. Updates on techniques and technology to optimize external ventricular drain placement: A review of the literature. Clin Neurol Neurosurg. 2022;213:107126.
Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65(5):636-41.
Sakamoto VT, Vieira TW, Viegas K, Blatt CR, Caregnato RC. Nursing assistance in patient care with external ventricular drain: a scoping review. Rev Bras Enferm. 2021;74(2):e20190796.
Qiu X, Wang Z, Pan L, Shen T, Deng D, Chen Q, et al. Use of a Microelectromechanical Systems Sensor for Objective Measurements of Abnormal Head Posture in Congenital Superior Oblique Palsy Patients. Transl Vis Sci Technol. 2024;13(10):30.
Luczak S, Zams M, Dabrowski B, Kusznierewicz Z. Tilt sensor with recalibration feature based on MEMS accelerometer. Sensors. 2022;22(4):1504.
McHugo VS, Nolke L, Delassus P, MaCarthy E, McMahon CJ, Morris L. The impact of compliance on Stage 2 uni-ventricular heart circulation: An experimental assessment of the Bidirectional Glenn. Med Eng Phys. 2020 ;84:184-92.
Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care. 2017;23(2):143-8.
Chakra CA, Gascoin S, Somma J, Fanise P, Drapeau L. Monitoring the snowpack volume in a sinkhole on Mount Lebanon using time lapse photogrammetry. Sensors. 2019;19(18):3890.
Olson DM, Zomorodi M, Britz GW, Zomorodi AR, Amato A, Graffagnino C. Continuous cerebral spinal fluid drainage associated with complications in patients admitted with subarachnoid hemorrhage. J Neurosurg. 2013;119(4):974-80.
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21:1-26.
de Boer M, van Doormaal JA, Köllen MH, Bartels LW, Robe PA, van Doormaal TP. Fully automatic anatomical landmark localization and trajectory planning for navigated external ventricular drain placement. Neurosurg Focus. 2025;59(1):E14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Thammasat University Hospital Journal Online

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.