Beef Tallow Consumption and Health

Authors

  • Chutima Limmatvapirat Faculty of Pharmacy, Silpakorn University

Keywords:

beef tallow, grass-fed tallow, fatty acid, antioxidant

Abstract

Edible beef tallow is off-white in color and its physicochemical properties are in compliance with the Codex Standard for Named Animal Fats. It is composed mainly of saturated fatty acids with some polyunsaturated fatty acids. Although stearic acid is the predominant saturated fatty acid in beef tallow, it has been shown to have a neutral effect on blood low-density lipoprotein cholesterol level. The valuable fatty acids found in beef tallow are conjugated linoleic acids, linoleic acid, gamma-linolenic acid, alpha-linolenic acid, arachidonic acid, docosapentaenoic acid, eicosapentaenoic acid, and docosahexaenoic acid. Furthermore, it has various antioxidant compounds including beta-carotene, alpha-tocopherol, and glutathione. The nutritional properties of fatty acids and antioxidants in beef tallow imply that the suitable tallow consumption may prevent diseases such as cardiovascular disease, atherosclerosis, Alzheimer’s disease, cancer, and rheumatoid arthritis. Previous reports have found that grass-fed tallow contains more omega-3, beta-carotene, alpha-tocopherol, and conjugated linoleic acids than grain-fed tallow.

References

1. Sharma H, Giriprasad R, Meena Goswami. Animal fat-processing and its quality control. J Food Process Technol. 2013;4(8): 1000252. doi:10.4172/2157-7110.1000252

2. Clark S, Jung S, Lamsal B. Food Processing: principles and applications, 2nd ed. [Online] John Wiley & Sons, Ltd. Publishing; 2014. Doi:10.1002/9781118846315.ch21

3. Akter S, Miah MA, Khan MAHNA, Islam MK. Comparative effects of animal and vegetable fats on lipid profile and patho-physiological changes in mice. J Sci Res. 2013;5(2): 353-361.

4. Maszewska M, Florowska A, Dłužewska E, Wroniak M, Marciniak-Lukasiak K, Žbikowska A. Oxidative stability of selected edible oils. Molecules. 2018;23(7): 1746.

5. Marchello JA. Animal fat composition and modification. School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA. Publishing; 2014. doi:10.1016/B978-1-78242-247-1.00003-X

6. Daley CA, Abbott A, Doyle PS, Nader GA, Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J. 2010;9: 10. doi:10.1186/1475-2891-9-10

7. Mapiye C, Aalhus JL, Turner TD, Rolland DC, Basarab JA, Baron VS, et al. Effects of feeding flaxseed or sunflower-seed in high-forage diets on beef production, quality and fatty acid composition. Meat Sci. 2013;95: 98-109. doi:10.1016/j.meatsci.2013.03.033

8. Pelliccia F, Marazzi G, Greco C, Franzoni F, Speziale G, Gaudio C. Current evidence and future perspectives on n-3 PUFAs. Int J Cardiol. 2013;170: S3–S7. doi:10.1016/j.ijcard.2013.06.044

9. Kelly ML, Berry JR, Dwyer DA, Griinari JM, Chouinard PY, Van Amburgh ME. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J Nutr. 1998;128: 881-885.

10. Tricon S, Burdge GC, Williams CM, Calder PC, Yaqoob P. The effects of conjugated linoleic acid on human health-related outcomes. Proc Nutr Soc. 2005;64(2): 171-182.

11. Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL, et al. Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr. 2002;76: 504-510.

12. Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE. Conjugated linoleic acid is synthesized endogenoulsy in lactating dairy cows by delta-9 desaturase. J Nutr. 2000;130: 2285-2291.

13. Sehat N, Rickert RR, Mossoba MM, Dramer JKG, Yurawecz MP, Roach JAG, et al. Improved separation of conjugated fatty acid methyl esters by silver ion-highperformance liquid chromatography. Lipids. 1999;34: 407-413.

14. Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: Evidence and speculation. Proc Soc Exp Biol Med. 2000;223(1): 8-13.

15. Schmid A, Collomb M, Sieber R, Bee G. Conjugated linoleic acid in meat and meat products. Meat Sci. 2006;73: 29-41.

16. Clement L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief B, et al. Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulemia and fatty liver in the mouse. J Lipid Res. 2002;43: 1400-1409.

17. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans 10cis12 conjugated linoleic acid causes isomer specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. 2002;25: 1516-1521.

18. Arab A, Akbarian SA, Ghiyasvand R, Miraghajani M. The effects of conjugated linoleic acids on breast cancer: A systematic review. Adv Biomed Res. [Online] 2016;5: 115. PMID: 27512684. doi:10.4103/2277-9175.185573

19. De La Torre A, Debiton E, Juanéda P, Durand D, Chardigny JM, Barthomeuf C, et al. Beef conjugated linoleic acid isomers reduce human cancer cell growth even when associated with other beef fatty acids. Br J Nutr. 2006;95(2): 346-352.

20. Ritzenthaler KL, McGuire MK, Falen R, Shultz TD, Dasgupta N, McGuire MA. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr. 2001;131: 1548-1554.

21. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation. 2017;136: e1-e23. doi:10.1161/CIR.0000000000000510

22. Troy DJ, Tiwari BK, Joo S. Health implications of beef intramuscular fat consumption. Korean J Food Sci Anim Resour. [Online] 2016;36(5): 577-582. doi:10.5851/kosfa.2016.36.5.577

23. Codex Standard for Named Animal Fats (CODEX-STAN 211 - 1999). SECTION 3. Codex Standard for Fats and Oils from Animal Sources. https://www.fao.org/docrep/004/y2774e/y2774e05.htm. Accessed: October 18, 2019

24. Hwang J. Diets with corn oil and/or low protein increase acute acetaminophen hepatotoxicity compared to diets with beef tallow in a rat model. Nutr Res Pract. 2009;3(2): 95-101. doi:10.4162/nrp.2009.3.2.95

25. Smith SB, Gill CA, Lunt DK, Brooks MA. Regulation of fat and fatty acid composition in beef cattle. Asian-Aust. J. Anim. Sci. 2009;22(9): 1225-1233.

26. Williamson CS, Foster RK, Stanner SA, Buttriss JL. Red meat in the diet. BNF Nutr Bull. 2005;30: 323-335.

27. de Almeida JC, Perassolo MS, Camargo JL, Bragagnolo N, Gross JL. Fatty acid composition and cholesterol content of beef and chicken meat in Southern Brazil. RBCF Braz J Pharm Sci. 2006;42(1): 109-117.

28. Troy DJ, Tiwari BK, Joo S. Health implications of beef intramuscular fat consumption. Korean J Food Sci Anim Resour. 2016;36(5): 577-582. PMID: 27857532. doi:10.5851/kosfa.2016.36.5.577

29. Partida JA, Olleta JL, Sañudo C, Albertí P, Campo MM. Fatty acid composition and sensory traits of beef fed palm oil supplements. Meat Sci. 2007;76(3): 444-454.

30. Scollan ND, Choi NJ, Kurt E, Fisher AV, Enser M, Wood JD. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br J Nutr. 2001;85(1): 115-124.

31. Silva LP, Joanitti GA, Leite JRSA, Azevedo RB. Comparative study of the antimicrobial activities and mammalian cytotoxicity of 10 fatty acid-rich oils and fats from animal and vegetable. Nat Prod J. 2011;1(1): 40-46. doi:10.2174/2210315511101010040\

32. Wood JD, Ense M, Fisher AV, Nute GR, Sheard PR, Richardson RI, et al. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008;78(4): 343-358.

33. Cho KH, Hong JH, Lee KT. Monoacylglycerol (MAG)-oleic acid has stronger antioxidant, anti-atherosclerotic, and protein glycation inhibitory activities than MAG-palmitic acid. J Med Food. 2010;13(1): 99-107. doi:10.1089/jmf.2009.1024

34. Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10: 120. doi:10.1186/1476-511X-10-120.

35. Chowdhury R, Steur M, Patel PS, Franco OH. Handbook of lipids in human function, fatty acids. 1st ed. Academic Press and AOCS Press; 2016.

36. Xu C, Wu P, Gao J, Zhang L, Ma T, Ma B, et al. Heptadecanoic acid inhibits cell proliferation in PC-9 non-small-cell lung cancer cells with acquired gefitinib resistance. Oncol Rep. 2019;41(6): 3499-3507. doi:10.3892/or.2019.7130

37. Chan JK, Bruce VM, McDonald BE. Dietary α-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men. Am J Clin Nutr. 1991;53(5): 1230-1234. doi:10.1093/ajcn/53.5.1230

38. Lim J, Oh J, Wang T, Lee J, Kim S, Kim Y, et al. trans-11 18:1 Vaccenic Acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients. 2014;6(2): 627-636.

39. Rassias G, Kestin M, Nestel PJ. Linoleic acid lowers LDL cholesterol without a proportionate displacement of saturated fatty acid. Eur J Clin Nutr. 1991;45(6): 315-320.

40. Harris M, Farrell V, Houtkooper L, Going S, Lohman T. Associations of polyunsaturated fatty acid intake with bone mineral density in postmenopausal women. J Osteoporos. 2015; Article ID 737521. doi:10.1155/2015/737521

41. Leikin-Frenkel AI. Is there a role for alpha-linolenic acid in the fetal programming of health?. J Clin Med. 2016;5(4): 40. doi:10.3390/jcm5040040

42. Kapoor R, Huang Y. Gamma linolenic acid: An anti-inflammatory omega-6 fatty acid. Curr Pharm Biotechnol. 2006;7: 531-534.

43. Wang X, Lin H, Gu Y. Multiple roles of dihomo-g-linolenic acid against proliferation diseases. Lipids Health Dis. 2012;11: 25.

44. Ouchi S, Miyazaki T, Shimada K, Sugita Y, Shimizu M, Murata A. et al. Decreased circulating dihomo-gamma-linolenic acid levels are associated with total mortality in patients with acute cardiovascular disease and acute decompensated heart failure. Lipids Health Dis. 2017;16:150. PMID: 28806965. doi:10.1186/s12944-017-0542-2

45. Amagai Y, Oida K, Matsuda A, Jung K, Kakutani S, Tanaka T, et al. Dihomo-γ-linolenic acid prevents the development of atopic dermatitis through prostaglandin D1 production in NC/Tnd mice. J Dermatol Sci. 2015;79(1): 30-37. doi:10.1016/j.jdermsci.2015.03.010

46. Tallima H, Ridi RE. Arachidonic acid: Physiological roles and potential health benefits - A review. J Adv Res. 2018;11: 33-41. doi:10.1016/j.jare.2017.11.004

47. Sun M, Dong J, Xia Y, Shu R. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans. Microb Pathog. 2017;107: 212-218. doi:10.1016/j.micpath.2017.03.040

48. Russell FD, Bürgin-Maunder CS. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs. 2012;10(11): 2535–2559. doi:10.3390/md10112535

49. Santos JEP, Greco LF, Garcia M, Thatcher WW, Staples CR. The Role of Specific Fatty Acids on Dairy Cattle Performance and Fertility. Proceedings of The 24th Annual Ruminant Nutrition Symposium. Department of Animal Sciences University of Florida; 2013. p. 74–88.

50. Sales J, Koukolová V. Dietary vitamin E and lipid and color stability of beef and pork: modeling of relationships. J Anim Sci. 2011;89(9): 2836-2848. doi:10.2527/jas.2010-3335

51. Pereira E, Napp A, Braun JV, Fontoura LAM, Vainstein MH. Development and validation of analytical methodology by GC-FID using hexadecyl propanoate as an internal standard to determine the bovine tallow methyl esters content. J Chromatogr B. 2018;1093-1094: 134-140.

52. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5): 1146-1155.

53. Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: A fresh look at the evidence. Lipids. 2010;45: 893-905. doi:10.1007/s11745-010-3393-4

54. Yuan YV, Kitts DD, Godin DV. Influence of increased saturated fatty acid intake from beef tallow on antioxidant status and plasma lipids in atherosclerosis-susceptible Japanese quail. Nutr. Res. 1999;19: 461-481.

55. Poon PWB, Durance T, Kitts DD. Composition and retention of lipid nutrients in cooked ground beef relative to heat-transfer rates. Food Chem. 2001;74: 485-491.

56. Avilés C, Martínez AL, Domenech V, Peña F Effect of feeding system and breed on growth performance: and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015;107: 94-103.

57. Fattore E, Fanelli R. Palm oil and palmitic acid: a review on cardiovascular effects and carcinogenicity. Int. J. Food Sci. Nutr. 2013;64: 648–659.

58. Smith DR, Wood R, Tseng S, Smith SB. Increased beef consumption increases lipoprotein A-I but not serum cholesterol of mildly hypercholesterolemic men with different levels of habitual beef intake. Exp Biol Med. 2002;227(4): 266-275.

59. Sobczuk-Szul M, Wroński M, Wielgosz-Groth Z, Mochol M, Rzemieniewski A, Nogalski Z, et al. The effect of slaughter season on the fatty acid profile in four types of fat deposits in crossbred beef bulls. Asian-Australas J Anim Sci. 2013;26(2): 275-281. doi:10.5713/ajas.2012.12371

60. Thomas BJ. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5(2): 127-132.

61. Scollan ND, Choi N, Kurt E, Fisher AV, Enser M, Wood JD. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br J Nutr. 2001;85: 115-124.

62. Gioxari A, Kaliora AC, Marantidou F, Panagiotak DP. Intake of ω-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: A systematic review and meta-analysis. Nutrition. 2018;45: 114-124.

63. Ajith TA. A recent update on the effects of omega-3 fatty acids in Alzheimer's disease. Curr Clin Pharmacol. 2018;134: 252-260. doi:10.2174/1574884713666180807145648

64. Raes K, DeSmet S, Demeyer D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review. Anim Feed Sci Technol. 2004;113: 199-221.

65. Banco M, Casasús I, Ripoll G, Panea B, Alberti P, Joy M. Lucerne grazing compared with concentrate-feeding slightly modifies carcass and meat quality of young bull. Meat Sci. 2010;84: 545-552.

66. Simopoulos A: Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr. 1991,54: 438-463.

67. Smith SB, Gill CA, Lunt DK, Brooks MA. Regulation of fat and fatty acid composition in beef cattle. Asian-Aust. J. Anim. Sci. 2009;22(9): 1225-1233.

68. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012;4(12): 1989-2007. doi:10.3390/nu4121989

69. Dunne PG, Monahan FJ, O’Mara FP, Moloney AP: Colour of bovine subcutaneous adipose tissue: A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history. Meat Sci. 2009;81(1): 28-45.

70. Pickworth CL, Loerch SC, Kopec RE, Schwartz SJ, Fluharty FL. Concentration of pro-vitamin A carotenoids in common beef cattle feedstuffs. J Anim Sci. 2012;90(5): 10.2527/jas.2011-4217. doi:10.2527/jas.2011-4217

71. Hunninghake DB, Maki KC, Kwiterovick PO Jr, Davidson MH, Dicklin MR, Kafonek SD. Incorporation of lean red meat national cholesterol education program step I diet: a long-term, randomized clinical trial in free-living persons with hypercholesterolemic. J Am Coll Nutr. 2000,19(3): 351-360.

72. Melanson K, Gootman J, Myrdal A, Kline G, Rippe JM. Weight loss and total lipid profile changes in overweight women consuming beef or chicken as the primary protein source. Nutrition. 2003;19: 409-414.

73. Descalzo AM, Insani EM, Biolatto A, Sancho AM, Garcia PT, Pensel NA, et al. Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. J Meat Sci. 2005;70: 35-44.

74. Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA. 2005;294(1): 56-65.

75. Weitberg AB, Corvese D. Effects of vitamin E and beta-carotene on DNA strand breakage induced by tobacco-specific nitrosamines and stimulated human phagocytes. J Exp Cancer Res. 1997,16: 11-14.

76. Edmunds MW, Mayhew MS. Pharmacology for the Primary Care Provider - E-Book, 4th ed. Elsevier Health Sciences. Publishing; 2014. https://evole.elsevier.com. Accessed: October 18, 2019.

77. Yang A, Brewster MJ, Lanari MC, Tume RK: Effect of vitamin E supplementation on alpha-tocopherol and beta-carotene concentrations in tissues from pasture and grain-fed cattle. Meat Sci. 2002;60(1): 35-40.

78. Nassu RT, Dugan ME, Juárez M, Basarab JA, Baron VS, Aalhus JL. Effect of α-tocopherol tissue levels on beef quality. Animal. 2011;5(12): 2010-2018. doi:10.1017/S1751731111001182

79. Yang A, Lanari MC, Brewster MJ, Tume RK: Lipid stability and meat colour of beef from pasture and grain-fed cattle with or without vitamin E supplement. Meat Sci. 2002;60: 41-50.

80. Valencia E, Marin A, Hardy G. Glutathione - Nutritional and pharmacological viewpoints: Part II. Nutraceuticals. 2001;17: 485-486.

81. Descalzo AM, Rossetti L, Grigioni G, Irurueta M, Sancho AM, Carrete J, et al. Antioxidant status and odor profile in fresh beef from pasture or grain-fed cattle. Meat Sci. 2007;75: 299-307.

82. Gatellier P, Mercier Y, Renerre M. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Sci. 2004;67: 385-394.

Downloads

Published

2020-01-02

How to Cite

1.
Limmatvapirat C. Beef Tallow Consumption and Health. J Chulabhorn Royal Acad [Internet]. 2020 Jan. 2 [cited 2024 Mar. 28];1(2):16-34. Available from: https://he02.tci-thaijo.org/index.php/jcra/article/view/222030

Issue

Section

Academic Articles