Andrographis Paniculate : From Integrated Research to Clinical Use as Anti COVID-19

Authors

  • จุฑามาศ สัตยวิวัฒน์ ห้องปฏิบัติการเภสัชวิทยา สถาบันวิจัยจุฬาภรณ์

Abstract

ฟ้าทะลายโจรเป็นสมุนไพรที่มีการใช้อย่างแพร่หลายทังในและต่างประเทศ นักวิทยาศาสตร์ได้มีการศึกษาสมุนไพร ชนิดนี้อย่างรอบด้านทั้งด้านการปลูก พฤกษเคมี เคมีคอมพิวเตอร์ อินทรัย์เคมีสังเคราะห์ เภสัชวิทยา พิษวิทยา และ ด้านคลินิก ฟ้าทะลายโจรทั้งชนิดผง และสารสกัดด้วยน้ำ หรือแอลกอฮอล์ มีสารสำคัญคือ Andrographolide (AP1), 14-Deoxy-11,12-didehydroandrographolide (AP3), Neoandrographolide (AP4) และ 14-Deoxyandrographolide (AP6) และสารอื่น ๆ ซึ่งมีปริมาณน้อยกว่าอีกประมาณ 20 กว่าชนิด สารบริสุทธิ์และสารสกัดฟ้าทะลายโจร มีฤทธิ์ทางเภสัชวิทยาหลากหลาย ที่มีการศึกษามากคือ ฤทธิ์ยับยั้งการเจริญเติบโตของเซลล์มะเร็ง ยับยั้งจุลชีพ และเชื้อไวรัส ลดน้ำตาล และลดความดันเลือด เป็นต้น ในช่วงที่มีการระบาดของเชื้อไวรัสโควิด-19 นักวิทยาศาสตร์ให้ ความสนใจในการนำฟ้าทะลายโจร ซึ่งมีสารสำคัญคือ Andrographolide และอนุพันธ์ มาทำาการศึกษาอย่างเป็นระบบ เป็นการบูรณาการศาสตร์ต่างๆ เช่น คอมพิวเตอร์เคมี ชีววิทยาระดับโมเลกุล เภสัชวิทยา และพิษวิทยา มีการศึกษา ในหลอดทดลองและการศึกษาในคนจนทราบว่ากลไกการออกฤทธิ คือ ยับยั้งการเพิ่มจำนวนไวรัสโควิด-19 ในหลอด ทดลองและผู้ป่วยในโครงการนำร่องทางคลินิกได้ผลดี มีอาการข้างเคียงในระดับที่ยอมรับได้ ซึ่งต่อมามีการใช้อย่าง กว้างขวางในประเทศไทยเพื่อการรักษาโรคติดเชื้อโควิด-19 ชนิดไม่รุนแรงในโรงพยาบาลสนามและเรือนจำในจังหวัด ต่างๆ ทำให้ช่วยลดภาระของระบบสาธารณสุขของประเทศได้ระดับหนึ่ง

References

Akaji K and Kono H. Design and evaluation of anti-SARS-Coronavirus agents based on molecular interactions with the viral protease. Molecules. 2020; 25: 3920.

Akbar S. Andrographis paniculata: A review of pharmacological activities and clinical effects. Altern Med Rev. 2011; 16(1): 66-77.

Alazmi M and Motwalli O. Molecular basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through docking, characterization, and molecular dynamics for natural drug candidates. J Mol Model. 2020; 26: 338.

Beigel JH, et al. Remdesivir for the treatment of Covid-19-Final report. N Engl J Med. 2020; 383: 1813-26.

Bhuiyam FR, et al. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med (Lausanne). 2020; 7: 444.

Boopathi S, et al. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2020; Published online: 30 April 2020. https://doi.org/10.1080/ 07391102.2020.1758788

Cáceres DD, et al. Prevention of common colds with Andrographis paniculata dried extract: A pilot double blind trial. Phytomedicine. 1997; 4(2): 101-4.

Cai W, et al. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes. Antiviral Res. 2015; 118: 82-92.

Cai W, et al. 14-Deoxy-11,12-didehydroandrographolideattenuatesexcessiveinflammatory responsesandprotectsmicelethallychallenged with highly pathogenic A(H5N1) influenza viruses. Antiviral Res. 2016; 133: 95-105.

Chen J-X, et al. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull. 2009; 32(8): 1385-91.

Churiyah, et al. Antiviral and immunostimulant activities of Andrographis paniculata. HAYATI J Biosci. 2015; 22(2): 67-72.

Coon JT, Ernst E. Andrographis paniculata in he treatment of upper respiratory tract infections: A systematic review of safety and efficacy. Planta Med. 2004; 70(4): 293-8.

Das S, et al. An investigation into the identification of potential inhibitors of SAR-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2020; Published online: 13 May 2020. https://doi.org/10.1080/073911 02.2020.1763201

Ding Y, et al. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-KB and JAK-STAT signaling pathway. Microbes Infect. 2017; 19(12): 605-15.

Edwin E-S, et al. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop. 2016; 163: 167-78.

Enmozhi SK, et al. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn. 2020; 39(9): 3092-8. https://doi.org/10.1080/07391102.2020.1760136.

Fiorucci D, et al. Computational drug repurposingfortheidentificationof SARS-CoV-2 main protease inhibitors. J BiomolStruct Dyn. 2020. https://doi.org/10.1080/07391102.2020. 1796805.

Fu B, et al. Why tocilizumab could be an effective treatment for severe COVID-19? J. Transl. Med. 2020; 18: 164. https://doi.org/10.1186/s12967-020-02339-3.

Goyal B and Goyal D. Targeting the dimerization of the main protease of corona viruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci. 2020; 22(6): 297-305.

Gupta B, et al. Broad-spectrum antiviral properties of andrographolide. Arch Virol. 2017; 162(3): 611-23.

Hancke J, et al. A double-blind study with a new monodrug Kan Jang: Decrease of symptoms and improvement in the recovery from common colds. Phytother Res. 1995; 9(8): 559-62.

Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271-80.

Hossain MS, et al. Andrographis paniculata (Burm.f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J. 2014: 274905. http://doi.org/10.1155/2014/274905.

Jafarzadeh A, et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020; 257: 118102.

Jalali A, et al. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother. Res. 2021; 35(4): 1925-38.

Jørgensen MJ, et al. Increased interleukin-6 and macrophage chemoattractant protein-1 are associated with respiratory failure in COVID-19.SciRep.2020;10(1):21697. https://doi.org/10.1038/541598-020-78710-7

Kausar S, et al. A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 2021; 35: 1-2. https://doi.org/10.1177/20587384211002621

Kodchakorn K, et al. Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2. J Mol Graph Model. 2020; 101: 107717.

Kou W, et al. Andrographolide suppresses IL-6/Stat3 signaling in peripheral blood mononuclear cells from patients with chronic rhinosinusitis with nasal polyps. Inflammation. 2014; 37(5): 1738-43.

Lakshmi SA, et al. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J Biomol Struct Dyn. 2020. https://doi.org/10.1080/07391102.2020.1778537.

Lee J-C, et al. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J Pharmacol. 2014; 171(1): 237-52.

Li Y, et al. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-kB/MARK signaling pathway. vid. Based Complementary Altern. Med. 2017: 8248142. https://doi.org/10.1155/2017/8248142.

Li Z, et al. Rapid review for the anti-coronavirus effect of remdesivir. Drug Discov Ther. 2020; 14(2): 73-6.

Lim XY, et al. Andrographis paniculata (Burm.f.) Wall. Ex Nees, andrographolide and andrographolide analogues as SARS-CoV-2 antivirals? A rapid review. Nat. Prod. Commun. 2021; 16(5): 1-5.

Maurya VK, et al. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. VirusDisease. 2020; 31: 179-93.

Mohammad T, et al. Identification of highaffinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Res. 2020; 288: 198102.

Mueller AA, et al. Inflammatory biomarker trends predict respiratory decline in COVID-19 patients. Cell Rep. Med. 2020; 1(8): 100144.

Murugan NA, et al. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn. 2020. https://doi.org/10.1080/07391102.2020.1777901.

Paemanee A, et al. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed Pharmacother. 2019; 109: 322-32.

PholphanaN,etal. Determinationandvariation of three active diterpenoids in Andrographis paniculata (Burm.f.) Nees. Phytochem. Anal. 2004; 15: 365-71.

Pholphana N, et al. Changes in the content of four active diterpenoids at different growth stages in Andrographis paniculata (Burm.f.) Nees (Chuanxinlian). Chinese Med. 2013; 8: 2.

Pholphana N, et al. A simple and sensitive LC-MS/MS method for determination of four major active diterpenoids from Andrographis paniculata in human plasma and its application to a pilot study. Planta Med. 2016; 82: 113-20.

Ponti G, et al. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020; 57(6): 389-99. https://doi.org/10.1080/10408363.2020.1770685.

Potempa LA, et al. Insights into the use of C-reactive protein as a diagnostic index of disease severity in COVID-19 infections. Am. J. Trop. Med. Hyg. 2020; 103(2): 561-3.

Sa-ngiamsuntorn K, et al. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod. 2021; 84(4): 1261-70. https://doi.org/10.1021/acs.jnatprod.0c01324.

Saxena RC, et al. A randomized double-blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmColdTM) in patients with uncomplicated upper respiratory tract infection. Phytomed. 2010; 17(3-4): 178-85.

Shi T-H, et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem. Biophys. Res. Commun. 2020; 533(3): 467-73.

Stoddard SV, et al. Optimization rules for SARS-CoV-2 Mpro antivirals: Ensemble docking and exploration of the coronavirus protease active site. Viruses. 2020; 12(9): 942.

Suriyo T, et al. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis. Planta Med. 2014; 80(7): 533-43.

Suriyo T, et al. Clinical parameters following multiple oral dose administration of a standardized Andrographis paniculata capsule in healthy Thai subjects. Planta Med. 2017; 83(9): 778-89.

Suriyo T, et al. Interactive effects of Andrographis paniculata extracts and cancer chemotherapeutic 5-Fluorouracil on cyto chrome P450s expression in human hepatocellular carcinoma HepG2 cells. J. Herb. Med. 2021; 26(10): 100421.

Thamlikitkul V, et al. Efficacy of Andrographis paniculata, Nees for pharyngotonsillitis in adults. J. Med. Assoc. Thai. 1991; 74(10): 437-42.

Thisoda P, et al. Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation. Eur. J. Pharmacol. 2006; 553(1-3): 39-45.

Wanaratna K, et al. Efficacy and safety of Andrographis paniculata extract in patients with mild COVID-19: A randomized controlled trial. Int. J. Inf. Dis. 2021; Preprint. https://doi.org/10.1 101/2021.07.08.21259912.

Wang L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 2020; 50(4): 332-4. https://doi.org/10.1016/jmedmal.2020.03.007.56.

Andrographis paniculata

Downloads

Published

2022-01-31

How to Cite

1.
สัตยวิวัฒน์ จ. Andrographis Paniculate : From Integrated Research to Clinical Use as Anti COVID-19. J Chulabhorn Royal Acad [Internet]. 2022 Jan. 31 [cited 2024 May 7];4(1):1-14. Available from: https://he02.tci-thaijo.org/index.php/jcra/article/view/255804

Issue

Section

Invited Article