Pharmacogenomics and the Treatment of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs)

Authors

  • Panudda Dechwongya Faculty of pharmacy, Payap University
  • Nopphadol Nuntamool Faculty of pharmacy, Payap University
  • Natharin Phattayanon Faculty of pharmacy, Payap University
  • Assawin Dadookel Faculty of pharmacy, Payap University

Keywords:

Pharmacogenomics, EGFR-TKI, Drug response, Adverse Drug Reactions

Abstract

The mutation of the epidermal growth factor receptor (EGFR) on the surface of cells plays a crucial role in the growth, proliferation, and survival of various cancer cells. About half of non-small cell lung cancer (NSCLC) cases, particularly among Asian patients, have this mutation. Studies have demonstrated that treatment with targeted drugs that specifically inhibit EGFR is more effective than traditional chemotherapy. Therefore, EGFR tyrosine kinase inhibitors (EGFR-TKIs) have become the first-line treatment for NSCLC patients with EGFR mutations. However, genetic variability and different types of cancer cell mutations result in varying responses to EGFR-TKIs. Furthermore, genetic variations in normal body cells affect both pharmacodynamics and pharmacokinetics, influencing drug levels in the target cells and clinical response. This article discusses the importance of pharmacogenomics in treating patients with EGFR mutations using EGFR-TKIs. It covers the study of the relationship between genetic variations and drug response, pharmacodynamic and pharmacokinetic properties, factors affecting drug response, and the occurrence of adverse drug reactions.

Downloads

Download data is not yet available.

References

Chang YS, Choi CM, Lee JC. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma. Tuberc Respir Dis (Seoul). 2016;79(4):248-256. doi:10.4046/trd.2016.79.4.248

Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer. 2021;2(4):377-391. doi:10.1038/s43018-021-00195-8

da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi:10.1146/annurev-pathol-011110-130206

Kucharczuk CR, Ganetsky A, Vozniak JM. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Adv Pract Oncol. 2018;9(2):189-200.

Nan X, Xie C, Yu X, Liu J. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer. Oncotarget. 2017;8(43):75712-75726. Published 2017 Aug 9. doi:10.18632/oncotarget.20095

Gay C, Toulet D, Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol. 2017;35(3):259-280. doi:10.1002/hon.2335

McKillop D, McCormick AD, Millar A, Miles GS, Phillips PJ, Hutchison M. Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica. 2005;35(1):39-50. doi:10.1080/00498250400026464

Alfieri RR, Galetti M, Tramonti S, et al. Metabolism of the EGFR tyrosin kinase inhibitor gefitinib by cytochrome P450 1A1 enzyme in EGFR-wild type non small cell lung cancer cell lines. Mol Cancer. 2011;10:143. Published 2011 Nov 23. doi:10.1186/1476-4598-10-143

Vlaming ML, Läppchen T, Jansen HT, et al. PET-CT imaging with [(18)F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood-brain barrier. Nucl Med Biol. 2015;42(11):833-841. doi:10.1016/j.nucmedbio.2015.07.004

Svedberg A, Vikingsson S, Vikström A, et al. Erlotinib treatment induces cytochrome P450 3A activity in non-small cell lung cancer patients. Br J Clin Pharmacol. 2019;85(8):1704-1709. doi:10.1111/bcp.13953

White-Koning M, Civade E, Geoerger B, et al. Population analysis of erlotinib in adults and children reveals pharmacokinetic characteristics as the main factor explaining tolerance particularities in children. Clin Cancer Res. 2011;17(14):4862-4871. doi:10.1158/1078-0432.CCR-10-3278

Wind S, Schnell D, Ebner T, Freiwald M, Stopfer P. Clinical Pharmacokinetics and Pharmacodynamics of Afatinib. Clin Pharmacokinet. 2017;56(3):235-250. doi:10.1007/ s40262-016-0440-1

Bello CL, LaBadie RR, Ni G, Boutros T, McCormick C, Ndongo MN. The effect of dacomitinib (PF-00299804) on CYP2D6 activity in healthy volunteers who are extensive or intermediate metabolizers. Cancer Chemother Pharmacol. 2012;69(4):991-997. doi:10.1007/s00280-011-1793-7

Dickinson PA, Cantarini MV, Collier J, et al. Metabolic Disposition of Osimertinib in Rats, Dogs, and Humans: Insights into a Drug Designed to Bind Covalently to a Cysteine Residue of Epidermal Growth Factor Receptor. Drug Metab Dispos. 2016;44(8):1201-1212. doi:10.1124/dmd.115.069203

van Hoppe S, Jamalpoor A, Rood JJM, et al. Brain accumulation of osimertinib and its active metabolite AZ5104 is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Pharmacol Res. 2019;146:104297. doi:10.1016/j.phrs.2019.104297

Zhang S, Jin S, Griffin C, et al. Effects of Itraconazole and Rifampin on the Pharmacokinetics of Mobocertinib (TAK-788), an Oral Epidermal Growth Factor Receptor Inhibitor, in Healthy Volunteers. Clin Pharmacol Drug Dev. 2021;10(9):1044-1053. doi:10.1002/cpdd.967

Shah R, Lester JF. Tyrosine Kinase Inhibitors for the Treatment of EGFR Mutation-Positive Non-Small-Cell Lung Cancer: A Clash of the Generations. Clin Lung Cancer. 2020;21(3):e216-e228. doi:10.1016/j.cllc.2019.12.003

Mitsudomi T, Kosaka T, Yatabe Y. Biological and clinical implications of EGFR mutations in lung cancer. Int J Clin Oncol. 2006;11(3):190-198. doi:10.1007/s10147-006-0583-4

Pirmohamed M. Pharmacogenetics and pharmacogenomics. Br J Clin Pharmacol. 2001;52(4):345-347. doi:10.1046/j.0306-5251.2001.01498.x

Patel JN, Mandock K, McLeod HL. Clinically relevant cancer biomarkers and pharmacogenetic assays. J Oncol Pharm Pract. 2014;20(1):65-72. doi:10.1177/1078155212473862

Jimeno A, Hidalgo M. Pharmacogenomics of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Biochim Biophys Acta. 2006;1766(2):217-229. doi:10.1016/j.bbcan.2006.08.008

Liu W, Innocenti F, Wu MH, et al. A Functional Common Polymorphism in a Sp1 Recognition Site of the Epidermal Growth Factor Receptor Gene Promoter. Cancer Research. 2005;65(1):46-53. doi:10.1158/0008-5472.46.65.1

Liu G, Gurubhagavatula S, Zhou W, et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J. 2008;8(2):129-138. doi:10.1038 /sj.tpj.6500444

Gregorc V, Hidalgo M, Spreafico A, et al. Germline polymorphisms in EGFR and survival in patients with lung cancer receiving gefitinib. Clin Pharmacol Ther. 2008;83(3):477-484. doi:10.1038/sj.clpt.6100320

Parmar S, Schumann C, Rüdiger S, et al. Pharmacogenetic predictors for EGFR-inhibitor-associated skin toxicity. Pharmacogenomics J. 2013;13(2):181-188. doi:10.1038/tpj.2011.51

Huang CL, Yang CH, Yeh KH, et al. EGFR intron 1 dinucleotide repeat polymorphism is associated with the occurrence of skin rash with gefitinib treatment. Lung Cancer. 2009;64(3):346-351. doi:10.1016/j.lungcan.2008.09.009

Ma F, Sun T, Shi Y, et al. Polymorphisms of EGFR predict clinical outcome in advanced non-small-cell lung cancer patients treated with Gefitinib. Lung Cancer. 2009;66(1):114-119. doi:10.1016/j.lungcan.2008.12.025

Moriai T, Kobrin MS, Hope C, Speck L, Korc M. A variant epidermal growth factor receptor exhibits altered type alpha transforming growth factor binding and transmembrane signaling. Proc Natl Acad Sci U S A. 1994;91(21):10217-10221. doi:10.1 073/pnas.91.21.10217

Sasaki H, Okuda K, Shimizu S, et al. EGFR R497K polymorphism is a favorable prognostic factor for advanced lung cancer. J Cancer Res Clin Oncol. 2009;135(2):313-318. doi:10.1007/s00432-008-0464-5

Sim SC, Ingelman-Sundberg M. The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics. 2010;4(4):278-281. doi:10.1186/1479-7364-4-4-278

Kiyohara C, Nakanishi Y, Inutsuka S, et al. The relationship between CYP1A1 aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population. Pharmacogenetics. 1998;8(4):315-323. doi:10.1097/00008571-199808 000-00005

Nie Q, Yang XN, An SJ, et al. CYP1A1*2A polymorphism as a predictor of clinical outcome in advanced lung cancer patients treated with EGFR-TKI and its combined effects with EGFR intron 1 (CA)n polymorphism. Eur J Cancer. 2011;47(13):1962-1970. doi:10.1016/j.ejca.2011.04.018

Evelina Cardoso, Guidi M, Khoudour N, et al. Population Pharmacokinetics of Erlotinib in Patients With Non-small Cell Lung Cancer: Its Application for Individualized Dosing Regimens in Older Patients. Clin Ther. 2020;42(7):1302-1316. doi:10.1016/j.clinthera.2020.05.008

Majam T, Sukasem C, Reungwetwattana T, et al. CYP450 and drug efflux transporters polymorphism influence clinical outcomes of Thai osimertinib-treated non-small cell lung cancer patients. Front Pharmacol. 2023;14:1222435. Published 2023 Nov 6. doi:10.3389/fphar.2023.1222435

O'Malley M, King AN, Conte M, Ellingrod VL, Ramnath N. Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. J Thorac Oncol. 2014;9(7):917-926. doi:10.1097/JTO.0000000000000191

PharmVar. CYP2A6. Accessed 30 July 2024. https://www.pharmvar.org/gene/CYP2A6

PharmGKB. Very Important Pharmacogene: CYP2C9. Accessed 30 July 2024. https://www.pharmgkb.org/vip/PA166169913

PharmGKB. CYP2C9*3. Accessed 30 July 2024. https://www.pharmgkb.org/ haplotype/PA165816544

Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83(2):234-242. doi:10.1038/sj.clpt .6100406

PharmGKB. Gene Reference Materials for CYP2D6. Accessed 31 january 2023. https://www.pharmgkb.org/page/cyp2d6RefMaterials

Kobayashi H, Sato K, Niioka T, et al. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib. Med Oncol. 2016;33(6):57. doi:10.1007/ s12032-016-0773-5

Suzumura T, Kimura T, Kudoh S, et al. Reduced CYP2D6 function is associated with gefitinib-induced rash in patients with non-small cell lung cancer. BMC Cancer. 2012;12:568. Published 2012 Dec 4. doi:10.1186/1471-2407-12-568

Sugiyama E, Umemura S, Nomura S, et al. Impact of single nucleotide polymorphisms on severe hepatotoxicity induced by EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer harboring EGFR mutations. Lung Cancer. 2015;90(2):307-313. doi:10.1016/j.lungcan.2015.08.004

Swaisland HC, Cantarini MV, Fuhr R, Holt A. Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet. 2006;45(6):633-644. doi:10.2165/00003088-200645060-00006

Kobayashi H, Sato K, Niioka T, Miura H, Ito H, Miura M. Relationship Among Gefitinib Exposure, Polymorphisms of Its Metabolizing Enzymes and Transporters, and Side Effects in Japanese Patients With Non-Small-Cell Lung Cancer. Clin Lung Cancer. 2015;16(4):274-281. doi:10.1016/j.cllc.2014.12.004

Takimoto T, Kijima T, Otani Y, et al. Polymorphisms of CYP2D6 gene and gefitinib-induced hepatotoxicity. Clin Lung Cancer. 2013;14(5):502-507. doi:10.1016/j.cllc.2013.03.003

Choi HG, Jeon JY, Im YJ, et al. Pharmacokinetic properties of two erlotinib 150 mg formulations with a genetic effect evaluation in healthy Korean subjects. Clin Drug Investig. 2015;35(1):31-43. doi:10.1007/s40261-014-0248-4

Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res. 2001;42(7):1007-1017.

Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92(16):1295-1302. doi:10.1093/jnci/92.16.1295

Sakamoto S, Sato K, Takita Y, et al. ABCG2 C421A polymorphisms affect exposure of the epidermal growth factor receptor inhibitor gefitinib. Invest New Drugs. 2020;38(6):1687-1695. doi:10.1007/s10637-020-00946-x

Hamada A, Sasaki J, Saeki S, et al. Association of ABCB1 polymorphisms with erlotinib pharmacokinetics and toxicity in Japanese patients with non-small-cell lung cancer. Pharmacogenomics. 2012;13(5):615-624. doi:10.2217/pgs.11.176

Endo-Tsukude C, Sasaki JI, Saeki S, et al. Population Pharmacokinetics and Adverse Events of Erlotinib in Japanese Patients with Non-small-cell Lung Cancer: Impact of Genetic Polymorphisms in Metabolizing Enzymes and Transporters. Biol Pharm Bull. 2018;41(1):47-56. doi:10.1248/bpb.b17-00521

Fukudo M, Ikemi Y, Togashi Y, et al. Population pharmacokinetics /pharmacodynamics of erlotinib and pharmacogenomic analysis of plasma and cerebrospinal fluid drug concentrations in Japanese patients with non-small cell lung cancer. Clin Pharmacokinet. 2013;52(7):593-609. doi:10.1007/s40262-013-0058-5

Akasaka K, Kaburagi T, Yasuda S, et al. Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non-small-cell lung cancer. Cancer Chemother Pharmacol. 2010;66(4):691-698. doi:10.1007/s00280-009-1211-6

Tamura M, Kondo M, Horio M, et al. Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and gefitinib toxicity. Nagoya J Med Sci. 2012;74(1-2):133-140.

Veerman GDM, Boosman RJ, Jebbink M, et al. Influence of germline variations in drug transporters ABCB1 and ABCG2 on intracerebral osimertinib efficacy in patients with non-small cell lung cancer. EClinicalMedicine. 2023;59:101955. Published 2023 Apr 13. doi:10.1016/j.eclinm.2023.101955

de Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JH, van Tellingen O. Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs. 2012;30(2):443-449. doi:10.1007/s10637-010-9569-1

Clinical Pharmacogenetics Implementation Consortium. Guidelines. Accessed 30 July 2024. https://cpicpgx.org/guidelines/

Downloads

Published

2024-09-30

How to Cite

1.
Dechwongya P, Nuntamool N, Phattayanon N, Dadookel A. Pharmacogenomics and the Treatment of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs). J Chulabhorn Royal Acad [Internet]. 2024 Sep. 30 [cited 2024 Dec. 21];6(3):140-54. Available from: https://he02.tci-thaijo.org/index.php/jcra/article/view/261964

Issue

Section

Academic Articles