Principle of Bone Tissue Engineering

Main Article Content

อุกฤษ เหลืองภัทรวงศ์

Abstract

Tissue engineering is a combination of knowledge in the field of Biological Science & Engineering for development Biomaterial which will reconstruct or maintain the function of the tissue. At present, most of bone replacement surgeries still use autologous bone grafts (autograft) as the main surgical material. However, autograft has some limitations. Therefore, many studies have been made to develop bone substitute and bone grafting materials to obtain materials that have similar properties to autograft.

Article Details

Section
บทความฟื้นวิชา (Subject Review)

References

1. O’Brien, Fergal J. Biomaterials & scaffolds for tissue engineering.Materials Today. 2011;14(3):88-95.
2. Lanza R, Langer R, Vacanti JP. Principles of tissue engineering. London; Academic Press. 2011.
3. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-26.
4. Rajesh V, Katti DS. Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine. 2006;1(1):15.
5. Irvine D. 20.462J Molecular Principles of Biomaterials. Massachusetts: MIT OpenCourseWare;2006. Available from: https://ocw.aprende.org/courses/biological-engineering/20-462j-molecular-principles-of-biomaterials-spring-2006/#
6. Kuznetsova D, Timashev PS, Bagratashvili VN, Zagaynova EV. Scaffold and Cell System-Based Bone Grafts in Tissue Engineering (Review). Sovrem Tehnol v Medicine. 2014;6:201–211.
7. Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nature Review Neuroscience. 2009;10:682–692.
8. Carballo-Molina OA, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neuroscience. 2015;9:1–12.
9. Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science 2017;356:3627.
10. Ullah F, OthmanMBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C. 2015;57:414–433.
11. Guvendiren M, Lu HD, Burdick JA. Shear-thinning hydrogels for biomedical applications. Soft Matter. 2012;(8):260–272.
12. Niemczyk B, Sajkiewicz PŁ, Kolbuk D. Injectable hydrogels as novel materials for central nervous system regeneration. Journal of Neural Engineering. 2018;15:1-36.
13. Lam J, Lowry WE, Carmichael ST, Segura T. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Advanced Functional Materials. 2014;24:7053–62.
14. Makin M. Osteogenesis induced by vesical mucosal transplant in the guinea pig. The Journal of bone and joint surgery. British volume. 1962;44:165–167.
15. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. Journal of the American Academy of Orthopaedic Surgeons 2005;13:77–86.
16. Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clinical Orthopaedics and Related Research. 1980;151:294 –307.
17. Caplan AI. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991;9:641– 650.
18. Khan SN, Cammisa FPJ, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. Journal of the American Academy of Orthopaedic Surgeons. 2005;13(1):77–86.
19. Manyalich M, Navarro A, Koller J, Loty B, de Guerra A, Cornu O, Vabels G, Fornasari P, Costa A, Siska I, et al. European quality system for tissue banking. Transplantation Proceedings. 2009;41(6):2035–43.
20. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. Journal of Bone and Joint Surgery. 1995; 77(11):1742–54.
21. Mroz TE, Joyce MJ, Steinmetz MP, Lieberman IH, Wang JC. Musculoskeletal allograft risks and recalls in the United States. Journal of the American Academy of Orthopaedic Surgeons. 2008;16(10):559–65.
22. Lomas R, Chandrasekar A, Board TN. Bone allograft in the UK: perceptions and realities. HIP International. 2013;23(5):427–33.
23. Schlickewie W, Schlickewie C. The use of bone substitutes in the treatment of bone defects—the clinical view and history. Macromolecular Symposia. 2007;253(1):10–23.
24. Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new standards. Journal of Dental Research. 2012;91(8):736–44.
25. Pryor LS, Gage E, Langevin CJ, Herrera F, et al. Review of bone substitutes. Craniomaxillofacial Trauma & Reconstruction. 2009;2(3):151–60.
26. Martin RB,Burr DB. The structure, function, and adaptation of compact bone. California: Raven Press;1989.
27. Martin RB,Burr DB, Sharkey NA, Skeletal Tissue Mechanics. New York:Springer;1998.
28. Schaffler MB,Burr DB, Stiffness of compact bone: effects of porosity and density. The Journal of Biomechanics. 1988;(21):13-16.
29. García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;(81): 112–121.
30. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;(26):5474–5491.
31. Salgado AJ, Coutinho OP, Reis RL, Bone tissue engineering: state of the art and future trends, Macromolecular Bioscience. 2004;4:743–65.
32. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W, Biomaterials as scaffolds for bone tissue engineering. European Journal of Trauma and Emergency Surgery. 2006;2:114–24.
33. Hayashi T, Biodegradable polymers for biomedical uses, Progress in Polymer Science. 1994;19:663–702.
34. Ahmed AE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications, Tissue Engineering Part B : Reviews. 2008; 14(2):199–215.
35. Brown AC, Baker TH. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level, Acta Biomaterialia. 2014;10(4):1502–14.
36. Wu S, Liu X, Yeung KWK, Liu C, Yang X, Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering R: Reports 2014;80:1-36.
37. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work: review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European cells & materials. 2003;5:29–40.
38. Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research, Bioresource Technology. 2010;101(22):8493–501.
39. Woodruff MA, Hutmacher DW. The return of a forgotten polymer - polycaprolactone in the 21st century. Progress in Polymer Science. 2010;35:1217–56.
40. Félix Lanao RP, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Engineering Part B : Reviews. 2013;19(4):380–390.
41. Yang XB, Roach HI, Clarke NM, Howdle SM, Quirk R, Shakesheff KM, et al. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone. 2001;29 :523–531.
42. Santavirta S, Konttinen YT, Saito T, Grönblad M, Partio E, Kemppinen P, et al. Immune response to polyglycolic acid implants. The Journal of Bone and Joint Surgery (British volume). 1990;72:597–600.
43. Liu X, Wei D, Zhong J, Ma M, Zhou J, Peng X, et al. Electrospun nanofibrous P(DLLA‐CL) balloons as calcium phosphate cement filled containers for bone repair: In vitro and in vivo studies. ACS Applied Materials & Interfaces. 2015;7:18540–52.
44. Del Real R, Wolke J, Vallet‐Regi M, Jansen J. A new method to produce macropores in calcium phosphate cements. Biomaterials. 2002;23: 3673–80.
45. Lindner M, Schickle K, Bergmann C, Fischer H. Ensuring defined porosity and pore size using ammonium hydrogen carbonate as porosification agent for calcium phosphate scaffolds. BioNanoMaterials. 2013;14:101–8.
46. Perez RA, Del Valle S, Altankov G, Ginebra MP. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2011;97:156–66.
47. Roohani‐Esfahani SI, Nouri‐Khorasani S, Lu Z, Appleyard R, Zreiqat H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials. 2010;31:5498–509
48. Zhang ZL, Chen XR, Bian S, Huang J, Zhang TL, Wang K. Identification of dicalcium phosphate dihydrate deposited during osteoblast mineralization in vitro. Journal of Inorganic Biochemistry. 2014;131:109–114.
49. Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants, Clinical Cases in Mineral and Bone Metabolism. 2013;10(2);111–5.
50. Bahraminasab M,Sahari BB, NiTi Shape Memory Alloys, Promising Materials in Orthopedic Applications, in Shape Memory Alloys - Processing, Characterization and Applications. In: Francisco Manuel Braz Fernandes. Shape Memory Alloys :Processing, Characterization and Applications. London: InTechOpen. 2013. p. 261-78.
51. Tan XP, Tan YJ,Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering: C. 2017;76:1328-43.
52. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. Journal of Bone and Joint Surgery. 1999; 81(5):907–14.
53. Wang N, Li H, Wang J, Chen S, Ma Y, Zhang Z. Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotubes array films. ACS Applied Materials & Interfaces. 2012;4(9):4516–23.
54. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses, Journal of Biomedical Materials Research. 1970;4:433–56.
55. Okazaki Y, Gotoh E. Metal release from stainless steel, Co–Cr–Mo–Ni– Fe and Ni–Ti alloys in vascular implants. Corrosion Science. 2008; 50(12):3429-38.
56. Kanaji A, Orhue V, Caicedo MS, Virdi AS, Sumner DR, Hallab NJ, et al. Cytotoxic effects of cobalt and nickel ions on osteocytes in vitro. Journal of orthopaedic surgery and research. 2014;9(1):91.
57. Zhao J, Chen L, Yu K, Chen C, Dai Y, Qiao X, et al., Biodegradation performance of a chitosan coated magnesium-zinc-tricalcium phosphate composite as an implant. Biointerphases. 2014;9(3): 031004.
58. Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Research. 2015;5:17059.
59. Yang G, Yang X, Zhang L, Sun X, Chen X, Gou Z. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state. Materials Letters 2012;75:80-3.
60. Kubasiewicz-Ross P, Hadzik J, Seeliger J, Kozak K, Jurczyszyn K, Gerber H, et al. New nano-hydroxyapatite in bone defect regeneration: a histological study in rats. Annals of Anatomy. 2017;213:83-90.
61. Gao C, Rahaman MN,Gao Q, Teramoto A, Abe K. Robotic deposition and in vitro characterization of 3D gelatin– bioactive glass hybrid scaffolds for biomedical applications. Journal of Biomedical Materials Research Part A. 2013;101A(7): 2027-37.
62. Lei B,Shin KH, Koh YH, Kim HE. Porous gelatin–siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. Journal of Biomedical Materials Research Part B. 2014; 102B:1528-36.
63. Gallacher L, Murdoch B, Wu D, Karanu F, Fellows F, Bhatia M. Identification of novel circulating human embryonic blood stem cells. Blood. 2000;96:1740–7.
64. Arinzeh TL, Peter SJ, Archambault MP, Van den Bos C, Gordon S. Kraus, K, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical‐sized canine segmental defect. The Journal of Bone & Joint Surgery. 2003;85:1927–35.
65. Andia I, Maffulli N. Platelet‐rich plasma for managing pain and inflammation in osteoarthritis. Nature Reviews Rheumatology. 2013;9: 721–30.
66. Hasan A, Paul A, Memic A, Khademhosseini A. A multilayered microfluidic blood vessel‐like structure. Biomedical Microdevices. 2015;17:88.
67. Kloen P, Di Paola M, Borens O,Richmond J, Perino G, Helfet DL, et al. BMP signaling components are expressed in human fracture callus. Bone 2003;33:362–71.
68. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–24.
69. Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone Morphogenetic Proteins: structure, biological function and therapeutic applications. Archives of Biochemistry and Biophysics. 2014;561:64–73.