The genotypic detection of blaVIM-2 among clinical carbapenem resistant Pseudomonas aeruginosa isolates from Phramongkutklao hospital Thailand

Main Article Content

Sudaluck Thunyaharn

Abstract

This study aimed to determine the presence of Verona integron-encoded metallo-β-lactamase-2 (VIM2) gene among clinical Pseudomonas aeruginosa isolates. All studied isolates from patients admitted at Phramongkutklao Hospital, Bangkok, Thailand in 2009. The included P. aeruginosa isolates for this study were imipenem or meropenem non-susceptible strains according to Clinical and Laboratory Standards Institute. The antimicrobial susceptibility testing was determined by using disk diffusion. VIM2-gene detection was assessed by polymerase chain reaction technique. Three hundred and three carbapenem non-susceptible P. aeruginosa isolates (CNS-PA) were included. One hundred and sixty two were detected metalo-betalactamase production. Thirty-eight out of 303 CNS-PA isolates (12.54%) harboring blaVIM2 gene with detecting phenotypic production of metalo-betalactamase. Thus, blaVIM2 gene partially plays a role for carbapenem resistance, however the most studied CNS-PA isolates with no studied genes have to be further investigated the mechanisms being responsible for carbapenem resistance.

Article Details

Section
นิพนธ์ต้นฉบับ (Original Article)

References

1. Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019; 44, 100640.
2. Pena C, Gomez-Zorrilla S, Oriol I, Tubau F, Dominguez M.A, Pujol M, Ariza J. Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: predictors of early and crude mortality. Eur J Clin Microbiol Infect Dis. 2013; 32:413-420.
3. Samonis G, Vardakas KZ, Kofteridis DP, Dimopoulou D, Andrianaki AM, Chatzinikolaou I, et al. Characteristics, risk factors and outcomes of adult cancer patients with extensively drug-resistant Pseudomonas aeruginosa infections. Infection. 2014; 42:721-728.
4. Sanchez-Diener I, Zamorano L, Pena C, Ocampo-Sosa A, Cabot G, Gomez-Zorrilla S, et al. Weighting the impact of virulence on the outcome of Pseudomonas aeruginosa bloodstream infections. Clin Microbiol Infect. 2020; 26:351-357.
5. Persoon MC, Voor In't Holt, A.F, Wielders CCH, Gommers D, Vos MC, et al. Mortality associated with carbapenem-susceptible and Verona Integron-encoded Metallo-beta-lactamase-positive Pseudomonas aeruginosa bacteremia. Antimicrob Resist Infect Control. 2020; 9:25.
6. Katvoravutthichai C, Boonbumrung K, Tiyawisutsri R. Prevalence of beta-lactamase classes A, C, and D among clinical isolates of Pseudomonas aeruginosa from a tertiary-level hospital in Bangkok, Thailand. Genet Mol Res. 2016; 15(3), 15038706.
7.Piyakul C, Tiyawisutsr, R, Boonbumrung K. Emergence of metallo-beta-lactamase IMP-14 and VIM-2 in Pseudomonas aeruginosa clinical isolates from a tertiary-level hospital in Thailand. Epidemiol Infect. 2012; 140:539-541.
8. Khuntayaporn P, Montakantikul P, Santanirand P, Kiratisin P, Chomnawang MT. Molecular investigation of carbapenem resistance among multidrug-resistant Pseudomonas aeruginosa isolated clinically in Thailand. Microbiol Immunol. 2013; 57::170-178.
9. Boonkerd N, Pibalpakdi P, Tiloklurs M, Niumsup PR. Class 1 integron containing metallo beta-lactamase gene blaIMP-1 in carbapenem-resistant Pseudomonas aeruginosa in Thailand. J Infect Chemother. 2009; 15:257-261.
10. Chew KL, Octavia S, Ng OT, Marimuthu K, Venkatachalam I, Cheng B, et al. Challenge of drug resistance in Pseudomonas aeruginosa: clonal spread of NDM-1-positive ST-308 within a tertiary hospital. J Antimicrob Chemother. 2019; 74:2220-2224.
11. Joji RM, Al-Rashed N, Saeed NK, Bindayna KM. Detection of VIM and NDM-1 metallo-beta-lactamase genes in carbapenem-resistant Pseudomonas aeruginosa clinical strains in Bahrain. J Lab Physicians. 2019; 11:138-143.
12.Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001; 7:88-91.12.
13.Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother, 44, 891-897.
14. Pacheco T, Bustos-Cruz RH, Abril D, Arias S, Uribe L, Rincon J, Garcia JC, Escobar-Perez J. Pseudomonas aeruginosa Coharboring BlaKPC-2 and BlaVIM-2 Carbapenemase Genes. Antibiotics (Basel). 2019; 8(3):98.
15. Walkty A, Alexander DC, Karlowsky JA., Nichol K, Embil J. (2019) Report of a KPC-producing Pseudomonas aeruginosa isolate in Canada. J Antimicrob Chemother, 74, 1748-1749.
16. Naenna P, Noisumdaeng P, Pongpech P, Tribuddharat C. Detection of outer membrane porin protein, an imipenem influx channel, in Pseudomonas aeruginosa clinical isolates. Southeast Asian J Trop Med Public Health. 2010; 41:614-624.
17. Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn?. Clin Microbiol Infect. 2017; 23:704-712.