The Effect of a High Monosodium Glutamate Diet in Inducing Changes in Microbiota Diversity and Kidney Pathology in Hamsters Infected with Opisthorchis viverrini Bacterial Diversity in Opisthorchiasis Hamsters Fed with MSG

Main Article Content

Ingkarat Sarutipaiboon
Rungtiwa Dangtakot
Sudaluck Thunyaharn
Somchai Pinlaor
Ornuma Haonon

Abstract

OBJECTIVE: To investigate the effect of a combination of a high dose of monosodium glutamate (MSG) and chronic Opisthorchis viverrini (O. viverrini) infection on kidney pathology and microbiota changes compared to either factor alone.
METHODS: Forty male golden hamsters were divided into four groups (10 hamsters per group): non-infected hamsters fed with standard diet (NC), O. viverrini infected hamsters fed with standard diet (OV), non-infected hamsters fed with high doses of MSG in drinking water (MS), and O. viverrini infected hamsters fed with high doses of MSG in drinking water (OM). After 8 months, fecal samples were collected, DNA extracted and subjected to 16S-rRNA sequencing analysis to determine microbial diversity. Kidneys were also collected for histopathological study.
RESULTS: Kidney histopathology showed tubular damages and tubular fibrosis were significantly prominent in the OM group, which showed higher pathology changes than in the OV group or MS groups. Next generation sequencing indicated that the levels of Firmicutes to Bacteroides ratio decreased in the OV group (0.28), MS group (0.43) and OM group (0.43) respectively when compared to control group (0.52). In genus levels, Methanobrevibacter, Ruminococcus_1, Escherichia Shigella, Bacteroides, Akkermansia and Oligella were abundance in the OM group.
CONCLUSION: The changing of gut microbiota distribution and kidney pathology changes were more severe in the cases of O. viverrini infection together with MSG consumption. This study provides a first step towards focusing on diet and parasitic infections.

Article Details

How to Cite
Sarutipaiboon, I., Dangtakot, R., Thunyaharn, S., Pinlaor, S., & Haonon, O. (2024). The Effect of a High Monosodium Glutamate Diet in Inducing Changes in Microbiota Diversity and Kidney Pathology in Hamsters Infected with Opisthorchis viverrini: Bacterial Diversity in Opisthorchiasis Hamsters Fed with MSG. Vajira Medical Journal : Journal of Urban Medicine, 68(1), e266185. https://doi.org/10.62691/vmj.2024.266185
Section
Original Articles

References

Zhao TT, Feng YJ, Doanh PN, Sayasone S, Khieu V, Nithikathkul C, et al. Model-based spatial-temporal mapping of opisthorchiasis in endemic countries of Southeast Asia. Elife 2021;10:e59755.

Boonpucknavig S, Boonpucknavig V, Tanvanich S, Doungchawee G, Thamavit W. Development of immune-complex glomerulonephritis and amyloidosis in Syrian golden hamsters infected with Opisthorchis viverrini. J Med Assoc Thai 1992;75 Suppl 1:7-19.

Silakit R, Loilome W, Yongvanit P, Thongchot S, Sithithaworn P, Boonmars T, et al. Urinary microRNA-192 and microRNA-21 as potential indicators for liver fluke-associated cholangiocarcinoma risk group. Parasitol Int 2017;66(4):479-85.

Saichua P, Yakovleva A, Kamamia C, Jariwala AR, Sithithaworn J, Sripa B, et al. Levels of 8-OxodG predict hepatobiliary pathology in Opisthorchis viverrini endemic settings in Thailand. PLoS Negl Trop Dis 2015;9(7):e0003949.

Saichua P, Sithithaworn P, Jariwala AR, Diemert DJ, Sithithaworn J, Sripa B, et al. Microproteinuria during Opisthorchis viverrini infection: a biomarker for advanced renal and hepatobiliary pathologies from chronic opisthorchiasis. PLoS Negl Trop Dis 2013;7(5):e2228.

Kazmi Z, Fatima I, Perveen S, Malik SS. Monosodium glutamate: review on clinical reports. Int J Food Prop 2017;20 Suppl 2:1807-15.

Settipane GA. The restaurant syndromes. N Engl Reg Allergy Proc 1987;8(1):39-46.

Williams AN, Woessner KM. Monosodium glutamate ‘allergy’: menace or myth? Clin Exp Allergy 2009;39(5):640-6.

Bawaskar HS, Bawaskar PH, Bawaskar PH. Chinese restaurant syndrome. Indian J Crit Care Med 2017;21(1):49-50.

Yu H, Wang R, Zhao Y, Song Y, Sui H, Wu Y, et al. Monosodium glutamate intake and risk assessment in China nationwide, and a comparative analysis worldwide. Nutrients 2023;15(11):2444.

Rachma FA, Saptawati T. Analysis tolerance of monosodium glutamate (MSG) in instant noodles with UV-vis spectrophotometry. J Sci Technol Res Pharm 2021;1(1):20-4.

Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, et al. Consensus meeting: monosodium glutamate - an update. Eur J Clin Nutr 2007;61(3):304-13.

Insawang T, Selmi C, Cha’on U, Pethlert S, Yongvanit P, Areejitranusorn P, et al. Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutr Metab (Lond) 2012;9(1):50.

Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C, et al. Monosodium glutamate dietary consumption decreases pancreatic β-cell mass in adult wistar rats. PLoS One 2015;10(6):e0131595.

Paul MV, Abhilash M, Varghese MV, Alex M, Nair RH. Protective effects of α-tocopherol against oxidative stress related to nephrotoxicity by monosodium glutamate in rats. Toxicol Mech Methods 2012;22(8):625-30.

Sharma A, Prasongwattana V, Cha’on U, Selmi C, Hipkaeo W, Boonnate P, et al. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One 2013;8(9):e75546.

Zafar H, Saier MH, Jr. Gut Bacteroides species in health and disease. Gut Microbes 2021;13(1):1-20.

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015;21(29):8787-803.

Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 2020;12(5):1474.

Haonon O, Liu Z, Dangtakot R, Pinlaor P, Puapairoj A, Cha’on U, et al. Opisthorchis viverrini infection induces metabolic disturbances in hamsters fed with high fat/high fructose diets: implications for liver and kidney pathologies. J Nutr Biochem 2022;107:109053.

Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003;361(9356):512-9.

Pongking T, Haonon O, Dangtakot R, Onsurathum S, Jusakul A, Intuyod K, et al. A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism. PLoS One 2020;15(4):e0231237.

Haonon O, Liu Z, Dangtakot R, Intuyod K, Pinlaor P, Puapairoj A, et al. Opisthorchis viverrini infection induces metabolic and fecal microbial disturbances in association with liver and kidney pathologies in Hamsters. J Proteome Res 2021;20(8):3940-51.

Peng Q, Huo D, Ma Ch, Jiang Sh, Wang L, Zhang J. Monosodium glutamate induces limited modulation in gut microbiota. J Funct Foods 2018;49:493-500.

Chaidee A, Onsurathum S, Intuyod K, Haonon O, Pannangpetch P, Pongchaiyakul C, et al. Opisthorchis viverrini infection augments the severity of nonalcoholic fatty liver disease in high-fat/high-fructose diet-fed Hamsters. Am J Trop Med Hyg 2019;101(5):1161-9.

Rangan GK, Tesch GH. Quantification of renal pathology by image analysis. Nephrology (Carlton) 2007;12(6):553-8.

Tonsawan P, Intarak S, Sripa B, Puapairoj A, Sripa M, Sithithaworn P, et al. Association between Opisthorchis viverrini infection and glomerular disease in Thailand. Am J Nephrol 2022;53(2-3):199-206.

Saltykova IV, Petrov VA, Brindley PJ. Opisthorchiasis and the microbiome. Adv Parasitol 2018;102:1-23.

Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015;26:26191.

Plieskatt JL, Deenonpoe R, Mulvenna JP, Krause L, Sripa B, Bethony JM, et al. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB J 2013;27(11):4572-84.

Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 2016;67(3):483-98.

Saranya GR, Viswanathan P. Gut microbiota dysbiosis in AKI to CKD transition. Biomed Pharmacother 2023;161:114447.

Mbakwa CA, Penders J, Savelkoul PH, Thijs C, Dagnelie PC, Mommers M, et al. Gut colonization with Methanobrevibacter smithii is associated with childhood weight development. Obesity (Silver Spring) 2015;23(12):2508-16.

Mafra D, Ribeiro M, Fonseca L, Regis B, Cardozo LFMF, Fragoso Dos Santos H, et al. Archaea from the gut microbiota of humans: could be linked to chronic diseases? Anaerobe 2022;77:102629.

Polag D, Keppler F. Global methane emissions from the human body: past, present and future. Atmos Environ 2019;214:116823.

Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol 2019;13(1):3-15.

Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet 2015;8(1):187-91.

Borges NA, Barros AF, Nakao LS, Dolenga CJ, Fouque D, Mafra D. Protein-bound uremic toxins from gut microbiota and inflammatory markers in chronic kidney disease. J Ren Nutr 2016;26(6):396-400.