Characterization of Entercytozoon bieneusi and Drug Resistance-Associated Mutations Using the β-Tubulin Gene Characterization of Entercytozoon bieneusi Using the β-Tubulin Gene
Main Article Content
Abstract
OBJECTIVE: In the β-tubulin gene of Enterocytozoon bieneusi, five mutations: His6, Phe167, Glu198, Phe200, and Arg241 have been implicated in reducing albendazole efficacy, with Glu198 and Phe200 being particularly significant. The primary objective of this study was to characterize mutations in the β-tubulin gene of E. bieneusi associated with albendazole resistance. Specifically, the study focused on mutations at codons Glu198 and Phe200 using newly developed primers (EbBtu198/200) with DNA extracted from fecal samples of pigs and humans.
METHODS: A total of 38 stored DNA samples, comprising 30 from different pigs and eight from different humans, were analyzed to evaluate the sensitivity of the newly designed primers and optimize the polymerase chain reaction (PCR) conditions. The encoded amino acid sequences were examined to identify the mutations at codons 198 and 200 in the β-tubulin gene of E. bieneusi. Additionally, a phylogenetic analysis was performed using the β-tubulin nucleotide sequences to determine the genetic relationships among different isolates.
RESULTS: PCR-amplification of the β-tubulin gene yielded a 427 bp product, with a primer sensitivity rate of 94.74%. Sequencing of 18 gene products revealed that ten sequences from pigs corresponded to Haplotype A, while human samples showed four haplotypes: A, B, C, and D. Notably, a mutation resulting in the substitution of glutamic acid with glutamine at codon 198 (E198Q) was identified, uncovering a potential mechanism for albendazole resistance. Phylogenetic analysis applying the maximum likelihood method demonstrated that all β-tubulin sequences formed a monophyletic group, indicating low genetic diversity among the E. bieneusi isolates.
CONCLUSION: This study underscores the significance of mutations in the β-tubulin gene, particularly at codon Glu198, as key factors potentially contributing to albendazole resistance in E. bieneusi. These findings may offer valuable insights for improving treatment strategies in patients harboring isolates with such mutations. Furthermore, the β-tubulin gene analysis revealed limited genetic diversity among E. bieneusi isolates, with distinct haplotypes detected in pig and human samples, suggesting possible host-specific adaptations or transmission patterns.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Katiyar SK, Gordon VR, McLaughlin GL, Edlind TD. Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence. Antimicrob Agents Chemother 1994;38(9):2086-90.
Akiyoshi DE, Weiss LM, Feng X, Williams BA, Keeling PJ, Zhang Q, et al. Analysis of the beta-tubulin genes from Enterocytozoon bieneusi isolates from a human and rhesus macaque. J Eukaryot Microbiol 2007;54(1):38-41.
Blanshard C, Ellis DS, Tovey DG, Dowell S, Gazzard BG. Treatment of intestinal microsporidiosis with albendazole in patients with AIDS. AIDS 1992;6(3):311-3.
Dieterich DT, Lew EA, Kotler DP, Poles MA, Orenstein JM. Treatment with albendazole for intestinal disease due to Enterocytozoon bieneusi in patients with AIDS. J Infect Dis 1994;169(1):178-83.
Conteas CN, Berlin OG, Ash LR, Pruthi JS. Therapy for human gastrointestinal microsporidiosis. Am J Trop Med Hyg 2000;63(3-4):121-7.
Gross U. Treatment of microsporidiosis including albendazole. Parasitol Res 2003;90 Suppl 1:S14-8.
Thathaisong U, Siripattanapipong S, Leelayoova S, Mungthin M. Prevalence and molecular characterization of Enterocytozoon bieneusi among pigs in Chonburi province, eastern Thailand. Am J Trop Med Hyg 2019;101(6):1392-6.
Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 2018;34(11):1937-8.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35(6):1547-9.
Leelayoova S, Subrungruang I, Suputtamongkol Y, Worapong J, Petmitr PC, Mungthin M. Identification of genotypes of Enterocytozoon bieneusi from stool samples from human immunodeficiency virus-infected patients in Thailand. J Clin Microbiol 2006;44(8):3001-4.
Li W, Feng Y, Santin M. Host specificity of Enterocytozoon bieneusi and public health implications. Trends Parasitol 2019;35(6):436-51.
Zhao W, Zhang W, Yang F, Zhang L, Wang R, Cao J, et al. Enterocytozoon bieneusi in dairy cattle in the northeast of China: genetic diversity of ITS gene and evaluation of zoonotic transmission potential. J Eukaryot Microbiol 2015;62(4):553-60.
MacDonald LM, Armson A, Thompson AR, Reynoldson JA. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis , Encephalitozoon intestinalis , and Cryptosporidium parvum. Mol Biochem Parasitol 2004;138(1):89-96.
Mohammedsalih KM, Krucken J, Khalafalla A, Bashar A, Juma FR, Abakar A, et al. New codon 198 beta-tubulin polymorphisms in highly benzimidazole resistant Haemonchus contortus from goats in three different states in Sudan. Parasit Vectors 2020;13(1):114.
Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 1988;18(7):885-936.
Robinson MW, McFerran N, Trudgett A, Hoey L, Fairweather I. A possible model of benzimidazole binding to β-tubulin disclosed by invoking an inter-domain movement. J Mol Graph Model 2004;23(3):275-84.
Kuhlmann FM, Fleckenstein JM. Antiparasitic agents. Infect Dis 2017;1345-72.e2.
Bicart-See A, Massip P, Linas MD, Datry A. Successful treatment with nitazoxanide of Enterocytozoon bieneusi microsporidiosis in a patient with AIDS. Antimicrob Agents Chemother 2000;44(1):167-8.
Saffo Z, Mirza N. Successful treatment of Enterocytozoon bieneusi gastrointestinal infection with nitazoxanide in a immunocompetent patient. IDCases 2019;18:e00586.
Singh N, Narayan S. Nitazoxanide: a broad-spectrum antimicrobial. Med J Armed Forces India 2011;67(1):67-8.
Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, et al. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother 2007;51(3):868-76.
Muller J, Naguleswaran A, Muller N, Hemphill A. Neospora caninum: functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides. Exp Parasitol 2008;118(1):80-8.
Abaza H, El-Zayadi AR, Kabil SM, Rizk H. Nitazoxanide in the treatment of patients with intestinal protozoan and helminthic infections: a report on 546 patients in egypt. Curr Ther Res 1998;59(2):116-21.
Molina JM, Goguel J, Sarfati C, Michiels JF, Desportes-Livage I, Balkan S, et al. Trial of oral fumagillin for the treatment of intestinal microsporidiosis in patients with HIV infection. ANRS 054 Study Group. Agence Nationale de Recherche sur le SIDA. AIDS 2000;14(10):1341-8.
Han B, Weiss LM. Therapeutic targets for the treatment of microsporidiosis in humans. Expert Opin Ther Targets 2018;22(11):903-15.
Molina JM, Tourneur M, Sarfati C, Chevret S, de Gouvello A, Gobert JG, et al. Fumagillin treatment of intestinal microsporidiosis. N Engl J Med 2002;346(25):1963-9.
Emery-Corbin SJ, Su Q, Tichkule S, Baker L, Lacey E, Jex AR. In vitro selection of Giardia duodenalis for Albendazole resistance identifies a beta-tubulin mutation at amino acid E198K. Int J Parasitol Drugs Drug Resist 2021;16:162-73.
Hastie AC, Georgopoulos SG. Mutational resistance to fungitoxic benzimidazole derivatives in Aspergillus nidulans. J Gen Microbiol 1971;67(3):371-3.
Franzen C, Salzberger B. Analysis of the beta-tubulin gene from Vittaforma corneae suggests benzimidazole resistance. Antimicrob Agents Chemother 2008;52(2):790-3.
Lee MH, Pan SM, Ngu TW, Chen PS, Wang LY, Chung KR. Mutations of beta-tubulin codon 198 or 200 indicate thiabendazole resistance among isolates of Penicillium digitatum collected from citrus in Taiwan. Int J Food Microbiol 2011;150(2-3):157-63.
Liu S, Duan Y, Ge C, Chen C, Zhou M. Functional analysis of the β2 -tubulin gene of Fusarium graminearum and the β-tubulin gene of Botrytis cinerea by homologous replacement. Pest Manag Sci 2013;69(5):582-8.
Bennett AB, Anderson TJ, Barker GC, Michael E, Bundy DA. Sequence variation in the Trichuris trichiura beta-tubulin locus: implications for the development of benzimidazole resistance. Int J Parasitol 2002;32(12):1519-28.
Ghisi M, Kaminsky R, Maser P. Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet Parasitol 2007;144(3-4):313-20.
Schwenkenbecher JM, Kaplan RM. Real-time PCR assays for monitoring benzimidazole resistance-associated mutati ons in Ancylostoma caninum. Exp Parasitol 2009;122(1):6-10.
Rashwan N, Diawara A, Scott ME, Prichard RK. Isothermal diagnostic assays for the detection of soil-transmitted helminths based on the SmartAmp2 method. Parasit Vectors 2017;10(1):496.
Nemati R, Bahari A, Mahmoodi P, Sazmand A. Molecular study of benzimidazole resistance in Teladorsagia circumcincta isolated from sheep in North of Iran. Iran J Parasitol 2019;14(4):646-51.
Wei J, Fei Z, Pan G, Weiss LM, Zhou Z. Current therapy and therapeutic targets for Microsporidiosis. Front Microbiol 2022;13:835390.
Chalmers RM, Campbell BM, Crouch N, Charlett A, Davies AP. Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK. J Med Microbiol 2011;60(Pt 11):1598-604.