A Review of the Beneficial Effects of Hesperidin on Urban Diseases Urban Diseases and the Potential of Hesperidin

Main Article Content

Chutamas Wunpathe
Anongnard Kasorn

Abstract

The urban environment is increasingly recognized as a key determinant of health, influencing lifestyles that can either promote or hinder well-being. This review aims to summarize recent studies (2020-2024) on the potential therapeutic effects of hesperidin, a flavonoid derived from citrus fruits, in addressing urban-related diseases worsened by pollution, sedentary habits, poor nutrition, and chronic stress. These health conditions include cardiovascular diseases respiratory issues, metabolic disorders, neurodegenerative diseases, mental health challenges, infectious diseases, and cancer. Hesperidin’s anti-inflammatory, antioxidant, and immunomodulatory properties have shown promise in improving cardiovascular health, reducing oxidative stress, enhancing insulin sensitivity, protecting against neurodegeneration, alleviating mental health symptoms, reducing respiratory inflammation, and inhibiting cancer cell growth. While preclinical studies show encouraging results, clinical evidence remains limited, underscoring the need for further research to validate its safety, efficacy, and optimal dosage for urban health interventions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Wunpathe, C. ., & Kasorn, A. (2025). A Review of the Beneficial Effects of Hesperidin on Urban Diseases: Urban Diseases and the Potential of Hesperidin. Vajira Medical Journal : Journal of Urban Medicine, 69(2), e272526. https://doi.org/10.62691/vmj.2025.272526
Section
Review Articles

References

Flies EJ, Mavoa S, Zosky GR, Mantzioris E, Williams C, Eri R, et al. Urban-associated diseases: candidate diseases, environmental risk factors, and a path forward. Environ int 2019;133:105187.

El Allaoui H, El Ahmadi K, El Abdouni A, Dira I, El Bastrioui M, Bouhrim M, et al. Trends and insights in medicinal plant extract research: a ten-year bibliometric and visualization study. Hortic 2024;10(11):1163.

Tong J, Lifang L, Dong Z, Xu Z. Anticancer effects of hesperidin on gastric cancer cell lines and fibroblast cell lines by reducing the activation of PI3K pathway. Biomed Res Bull 2023;1(3):92-5.

Prasatthong P, Meephat S, Rattanakanokchai S, Bunbupha S, Prachaney P, Maneesai P, et al. Hesperidin ameliorates signs of the metabolic syndrome and cardiac dysfunction via IRS/Akt/GLUT4 signaling pathway in a rat model of diet-induced metabolic syndrome. Eur J Nutr 2021;60(2):833-48.

Bunbupha S, Apaijit K, Potue P, Maneesai P, Pakdeechote P. Hesperidin inhibits L-NAME-induced vascular and renal alterations in rats by suppressing the renin-angiotensin system, transforming growth factor-β1, and oxidative stress. Clin Exp Pharmacol Physiol 2021;48(3):412-21.

Khan A, Ikram M, Hahm JR, Kim MO. Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: special focus on neurological disorders. Antioxidants (Basel) 2020;9(7):609.

Brewer M. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 2011;10(4):221-47.

Musa AE, Omyan G, Esmaely F, Shabeeb D. Radioprotective effect of hesperidin: a systematic review. Medicina (Kaunas) 2019;55(7):370.

Lu Y, Zhang C, Bucheli P, Wei D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum Nutr 2006;61(2):57-63.

Pyrzynska K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients 2022;14(12):2387.

Adefegha SA, Bottari NB, Leal DB, de Andrade CM, Schetinger MR. Interferon gamma/interleukin-4 modulation, anti-inflammatory and antioxidant effects of hesperidin in complete Freund’s adjuvant (CFA)-induced arthritis model of rats. Immunopharmacol Immunotoxicol 2020;42(5):509-20.

Li X, Huang W, Tan R, Xu C, Chen X, Li S, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect. Biomed Pharmacother 2023;159:114222.

Rahmani AH, Babiker AY, Anwar S. Hesperidin, a bioflavonoid in cancer therapy: a review for a mechanism of action through the modulation of cell signaling pathways. Molecules 2023;28(13):5152.

Chen F, Zhang W, Mfarrej MFB, Saleem MH, Khan KA, Ma J, et al. Breathing in danger: understanding the multifaceted impact of air pollution on health impacts. Ecotoxicol Environ Saf 2024;280:116532.

Levin ME, Botha M, Basera W, Facey-Thomas HE, Gaunt B, Gray CL, et al. Environmental factors associated with allergy in urban and rural children from the South African Food Allergy (SAFFA) cohort. J Allergy Clin Immunol 2020;145(1):415-26.

Desalu OO, Adeoti AO, Ojuawo OB, Aladesanmi AO, Oguntoye MS, Afolayan OJ, et al. Urban-rural differences in the epidemiology of asthma and allergies in Nigeria: a population-based Study. J Asthma Allergy 2021;14:1389-97.

Hosawi S. Current update on role of hesperidin in inflammatory lung diseases: chemistry, pharmacology, and drug delivery approaches. Life (Basel) 2023;13(4):937.

de Souza ABF, de Matos NA, Castro TF, Costa GP, Talvani A, Nagato AC, et al. Preventive effects of hesperidin in an experimental model ofs acute lung inflammation. Respir Physiol Neurobiol 2024;323:104240.

Salama A, Gouida MSO, Yassen NN, Sedik AA. Immunoregulatory role of hesperidin against ovalbumin (OVA)-induced bronchial asthma and depression in rats. Naunyn Schmiedebergs Arch Pharmacol 2024;397(5):3363-78.

Zuo T, Kamm MA, Colombel JF, Ng SC. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2018;15(7):440-52.

Gumtorntip W, Kasitanon N, Louthrenoo W, Chattipakorn N, Chattipakorn SC. Potentia roles of air pollutants on the induction and aggravation of rheumatoid arthritis: From cell to bedside studies. Environ Pollut 2023;334:122181.

Babu V, Binwal M, Ranjana, Kumari R, Sen S, Kumar A, et al. Hesperidin-rich ethanol extract from waste peels of citrus limetta mitigates rheumatoid arthritis and related complications. Phytother Res 2021;35(6):3325-36.

Ahmad S, Mittal S, Gulia R, Alam K, Saha TK, Arif Z, et al. Therapeutic role of hesperidin in collagen-induced rheumatoid arthritis through antiglycation and antioxidant activities. Cell Biochem Funct 2022;40(5):473-

Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Sci Rep 2024;14(1):7434.

Nwana N, Javed Z, Jones SL, Lee C, Maddock JE, Al-Kindi S, et al. Green streets, healthy hearts: exploring the roles of urban nature and walkability in cardiovascular health. Methodist Debakey Cardiovasc J 2024;20(5):37-46.

Zhang L, Liu Z, Zeng J, Wu M. Long-term effects of air quality on hospital readmission for heart failure in patients with acute myocardial infarction. Int J Cardiol 2024;412:132344.

Alharbi FK, Alshehri ZS, Alshehri FF, Alhajlah S, Khalifa HA, Dahran N, et al. The role of hesperidin as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: The antioxidant, anti-inflammatory, antiapoptotic, and cytoprotective potentials. Open Vet J 2023;13(12):1718.

Varışlı B, Darendelioğlu E, Caglayan C, Kandemir FM, Ayna A, Genç A, et al. Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-induced cardiotoxicity in rats. Cardiovasc Toxicol 2022;22(8):727-35.

Jia Y, Guo H, Cheng X, Zhang Y, Si M, Shi J, et al. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway. Food Funct 2022;13(7):4205-15.

Wang F, Zhao C, Yang M, Zhang L, Wei R, Meng K, et al. Four citrus flavanones exert atherosclerosis alleviation effects in ApoE-/- mice via different metabolic and signaling pathways. J Agric Food Chem 2021;69(17):5226-37.

Koga M, Kanaoka Y, Inada K, Omine S, Kataoka Y, Yamauchi A. Hesperidin blocks varenicline-aggravated atherosclerotic plaque formation in apolipoprotein E knockout mice by downregulating net uptake of oxidized low-density lipoprotein in macrophages. J Pharmacol Sci 2020;143(2):106-11.

Bikis A. Urban air pollution and greenness in relation to public health. J Environ Public Health 2023;2023:8516622.

Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, et al. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020;696:108662.

Cory-Slechta DA, Merrill A, Sobolewski M. Air pollution-related neurotoxicity across the life span. Annu Rev Pharmacol Toxicol 2023;63:143-63.

Adedara AO, Bressan GN, Dos Santos MM, Fachinetto R, Abolaji AO, Barbosa NV. Antioxidant responses driven by hesperetin and hesperidin counteract Parkinson’s disease-like phenotypes in Drosophila melanogaster. Neurotoxicology 2024;101:117-27.

Joshi S, Dhingra AK, Chopra B, Guarve K, Bhateja D. Therapeutic potential and clinical evidence of hesperidin as neuroprotective agent. Cent Nerv Syst Agents Med Chem 2022;22(1):5-14.

Kuşi M, Becer E, Vatansever HS, Yücecan S. Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an In Vitro model for alzheimer’s disease. J Am Nutr Assoc 2023;42(4):418-26.

Yilmazer UT, Pehlivan B, Guney S, Yar-Saglam AS, Balabanli B, Kaltalioglu K, et al. The combined effect of morin and hesperidin on memory ability and oxidative/nitrosative stress in a streptozotocin-induced rat model of Alzheimer’s disease. Behav Brain Res 2024;471:115131.

Elyasi L, Jahanshahi M, Jameie SB, Hamid Abadi HG, Nikmahzar E, Khalili M, et al. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J Basic Clin Physiol Pharmacol 2020;32(2):11-7.

Poetini MR, Musachio EAS, Araujo SM, Bortolotto VC, Meichtry LB, Silva NC, et al. Improvement of non-motor and motor behavioral alterations associated with Parkinson-like disease in Drosophila melanogaster: comparative effects of treatments with hesperidin and L-dopa. Neurotoxicology 2022;89:174-83.

Lim C, Zhen AX, Ok S, Fernando PDSM, Herath HMUL, Piao MJ, et al. Hesperidin protects SH-SY5Y neuronal cells against high glucose-induced apoptosis via regulation of MAPK signaling. Antioxidants (Basel) 2022;11(9):1707.

Lee D, Kim N, Jeon SH, Gee MS, Ju YJ, Jung MJ, et al. Hesperidin improves memory function by enhancing neurogenesis in a mouse model of Alzheimer’s disease. Nutrients 2022;14(15):3125.

Nyberg F, Gustavsson P, Järup L, Bellander T, Berglind N, Jakobsson R, et al. Urban air pollution and lung cancer in Stockholm. Epidemiology 2000;11(5):487-95.

Ruchirawat M, Settachan D, Navasumrit P, Tuntawiroon J, Autrup H. Assessment of potential cancer risk in children exposed to urban air pollution in Bangkok, Thailand. Toxicol Lett 2007;168(3):200-9.

Kittisiam T, Muangkhoua S, Tangjitgamol S, Tantraporn T, Yangsamit P, Assavavisidchai N, et al. Prevalence of other cancers in ovarian cancer patients. Vajira Med J 2018;62(1):1-8.

Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and mortality in China, 2016. J Natl Cancer Cent 2022;2(1):1-9.

Shakiba E, Bazi A, Ghasemi H, Eshaghi-Gorji R, Mehdipour SA, Nikfar B, et al. Hesperidin suppressed metastasis, angiogenesis and tumour growth in Balb/c mice model of breast cancer. J Cell Mol Med 2023;27(18):2756-69.

Ning L, Zhao W, Gao H, Wu Y. Hesperidin induces anticancer effects on human prostate cancer cells via ROS-mediated necrosis like cell death. J BUON 2020;25(6):2629-34.

Tan S, Dai L, Tan P, Liu W, Mu Y, Wang J, et al. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR 132/ZEB2 signalling pathway. Int J Mol Med 2020;46(6):2069-77.

Wudtiwai B, Makeudom A, Krisanaprakornkit S, Pothacharoen P, Kongtawelert P. Anticancer activities of hesperidin via suppression of up-regulated programmed death-ligand 1 expression in oral cancer cells. Molecules 2021;26(17):5345.

Deng J, Liu L, Li L, Sun J, Yan F. Hesperidin delays cell cycle progression into the G0/G1 phase via suspension of MAPK signaling pathway in intrahepatic cholangiocarcinoma. J Biochem Mol Toxicol 2022;36(4):e22981.

Abroon S, Nouri M, Mahdavi M. Hesperidin/Salinomycin combination; a natural product for deactivation of the PI3K/Akt signaling pathway and anti-apoptotic factors in KG1a cells. J Fluoresc 2024:1-10.

Chen SJ, Lu JH, Lin CC, Zeng SW, Chang JF, Chung YC, et al. Synergistic chemopreventive effects of a novel combined plant extract comprising gallic acid and hesperidin on colorectal cancer. Curr Issues Mol Biol 2023;45(6):4908-22.

Hermawan A, Khumaira A, Ikawati M, Putri H, Jenie RI, Angraini SM, et al. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem 2021;90:107427.

Kongtawelert P, Wudtiwai B, Shwe TH, Pothacharoen P, Phitak T. Inhibitory effect of hesperidin on the expression of programmed death ligand (PD-L1) in breast cancer. Molecules 2020;25(2):252.

Hsu PH, Chen WH, Juan-Lu C, Hsieh SC, Lin SC, Mai RT, et al. Hesperidin and chlorogenic acid synergistically inhibit the growth of breast cancer cells via estrogen receptor/mitochondrial pathway. Life (Basel) 2021;11(9):950.

Gur C, Kandemir FM, Caglayan C, Satıcı E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem Biol Interact 2022;365:110073.

Saetta M, Turato G, Maestrelli P, Mapp CE, Fabbri LM. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163(6):1304-9.

King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015;4(1):68.

Wang S, He N, Xing H, Sun Y, Ding J, Liu L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J Recept Signal Transduct Res 2020;40(4):388-94.

Animaw W, Seyoum Y. Increasing prevalence of diabetes mellitus in a developing country and its related factors. PLoS One 2017;12(11):e0187670.

Rehman K, Munawar SM, Akash MSH, Buabeid MA, Chohan TA, Tariq M, et al. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS One 2020;15(1):e0227637.

Rajan P, Natraj P, Ranaweera SS, Dayarathne LA, Lee YJ, Han CH. Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res Int 2022;162(Pt B):112059.

Aja PM, Izekwe FI, Famurewa AC, Ekpono EU, Nwite FE, Igwenyi IO, et al. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and iNOS/NF-ĸB signaling in rats. Life Sci 2020;259:118268.

Atta IS, Elnady MR, Alghamdi AG, Alghamdi AH, Aboulata AA, Shatla IM. Assessing the hepatoprotective effects of hesperidin on liver-associated disorders in albino rats with experimentally induced obesity and type II diabetes: a histological and biochemical study. Heliyon 2023;9(5):e16031.

Guirro M, Gual-Grau A, Gibert-Ramos A, Alcaide-Hidalgo JM, Canela N, Arola L, et al. Metabolomics elucidates dose-dependent molecular beneficial effects of hesperidin supplementation in rats fed an obesogenic diet. Antioxidants (Basel) 2020;9(1):79.

Chen Q, Hu K, Shi J, Li H, Li W. Hesperidin inhibits methylation and autophagy in LPS and high glucose-induced human villous trophoblasts. Biochem Biophys Res Commun 2023;671:278-85.

Nobile F, Forastiere A, Michelozzi P, Forastiere F, Stafoggia M. Long-term exposure to air pollution and incidence of mental disorders. A large longitudinal cohort study of adults within an urban area. Environ Int 2023;181:108302.

Cao H, Yang D, Nie K, Lin R, Peng L, Zhou X, et al. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol 2023;952:175670.

Xie L, Gu Z, Liu H, Jia B, Wang Y, Cao M, et al. The anti-depressive effects of hesperidin and the relative mechanisms based on the NLRP3 inflammatory signaling pathway. Front Pharmacol 2020;11:1251.

Zhu X, Liu H, Liu Y, Chen Y, Liu Y, Yin X. The antidepressant-like effects of hesperidin in streptozotocin-induced diabetic rats by activating Nrf2/ARE/glyoxalase 1 pathway. Front Pharmacol 2020;11:1325.

Antunes MS, Cattelan Souza L, Ladd FVL, Ladd AABL, Moreira AL, Bortolotto VC, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of Parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice. Mol Neurobiol 2020;57(7):3027-41.

Lee B, Choi GM, Sur B. Antidepressant-like effects of hesperidin in animal model of post-traumatic stress disorder. Chin J Integr Med 2021;27(1):39-46.

Khorasanian AS, Jazayeri S, Omidi N, Booyani Z, Morvaridi M, Tehrani-Doost M, et al. Hesperidin reduces depressive symptoms in post-coronary artery bypass graft patients with mild depression. Food Sci Nutr 2023;11(12):7742-50.

Chen K, Li Z. The spread rate of SARS-CoV-2 is strongly associated with population density. J Travel Med 2020;27(8):taaa186.

Yin H, Sun T, Yao L, Jiao Y, Ma L, Lin L, et al. Association between population density and infection rate suggests the importance of social distancing and travel restriction in reducing the COVID-19 pandemic. Environ Sci Pollut Res Int 2021;28(30):40424-30.

Huang Y, Zhou W, Sun J, Ou G, Zhong NS, Liu Z. Exploring the potential pharmacological mechanism of hesperidin and glucosyl hesperidin against COVID-19 based on bioinformatics analyses and antiviral assays. Am J Chin Med 2022;50(2):351-69.

Cheng FJ, Huynh TK, Yang CS, Hu DW, Shen YC, Tu CY, et al. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients 2021;13(8):2800.

Attia GH, Moemen YS, Youns M, Ibrahim AM, Abdou R, El Raey MA. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf B Biointerfaces 2021;203:111724.

Dupuis J, Laurin P, Tardif JC, Hausermann L, Rosa C, Guertin MC, et al. Fourteen‐day evolution of COVID‐19 symptoms during the third wave in nonvaccinated subjects and effects of hesperidin therapy: a randomized, double‐blinded, placebo‐controlled study. Evid Based Complement Alternat Med 2022;2022(1):3125662.

Eberle RJ, Olivier DS, Pacca CC, Avilla CMS, Nogueira ML, Amaral MS, et al. In vitro study of hesperetin and hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS One 2021;16(3):e0246319.

Khan M, Rauf W, Habib FE, Rahman M, Iqbal S, Shehzad A, et al. Hesperidin identified from citrus extracts potently inhibits HCV genotype 3a NS3 protease. BMC Complement Med Ther 2022;22(1):98.

Roshni PS, Alexpandi R, Abirami G, Durgadevi R, Cai Y, Kumar P, et al. Hesperidin methyl chalcone, a citrus flavonoid, inhibits Aeromonas hydrophila infection mediated by quorum sensing. Microb Pathog 2023;177:106029.