A Review on Automatic Detection Methods of Sleep Spindles

Authors

  • Shinanang Promkaew Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy
  • Pornwanut Kitudom Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy
  • Isaree Suwansombat Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy
  • Thamonwan Thongbun Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy
  • Kaewklao Thavornwattana Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy
  • Santitham Prom-on Faculty of Engineering, King Mongkut’s University of Technology Thonburi
  • Woranich Hinthong Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

Keywords:

Electroencephalography (EEG), Signal processing, Machine learning, Sleep spindle, Automatic detection

Abstract

Sleep spindle is a pattern of brainwave during non-rapid eye movement (NREM) in the second stage of sleep. There are several indications that Sleep spindles might play an important role in memory consolidation, and neurodegenerative disorders such as Alzheimer’s disease andinsomnia. Sleep spindle is commonly annotated by visual inspection of experts which is time consuming, and the task has risk of high error due to over-reliance on the experts’ skill or variations in characteristics of Sleep spindle. Modern research aims to study machine learning to develop the efficient automatic Sleep spindle detectors, emulate human annotations, and solve the stated problems. However, there are few review articles on the subject. This article summarizes and compares the automatic detection methods of Sleep spindle. The workflow can be summarized into five steps: data collection, data preprocessing, feature extraction, modeling, and model evaluation. This article reveals the variation of Machine Learning application and study on supervised model can detect Sleep spindle equivalent to experts. Nevertheless, the model need customization to suit data diversity. In addition, the discussion includes recommendation and possibility for further studies.

Downloads

Download data is not yet available.

Author Biographies

Shinanang Promkaew, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

 

 

Pornwanut Kitudom, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

 

 

Isaree Suwansombat, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

 

 

Thamonwan Thongbun, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

 

 

Kaewklao Thavornwattana, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

 

 

Santitham Prom-on, Faculty of Engineering, King Mongkut’s University of Technology Thonburi

 

 

Woranich Hinthong, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy

 

 

References

What are Sleep Deprivation and Deficiency? [Internet]. NHLBI, NIH. [cited 2022 Nov 11]. Available from: https://www.nhlbi.nih.gov/health-topics/sleep-deprivation-anddeficiency

Memar P, Faradji F. A Novel Multi-Class EEGBased Sleep Stage Classification System. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2018;26(1):84-95. https://doi.org/10.1109/TNSRE.2017.2776149 PMid:29324406

In Recognition of World Sleep Day, Philips Presents Its Annual Global Sleep Survey Results [Internet]. Philips. 2019 [cited 2022 Nov 11]. Available from: https://www.philips. com/a-w/about/news/archive/standard/news/press/2019/20190307-in-recognitionof-world-sleep-day-philips-presents-itsannual-global-sleep-survey-results.html

Klem GH, Lüders HO, Jasper HH, Elger C. The Ten-twenty Electrode System of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6.

Born J, Wilhelm I. System consolidation of memory during sleep. Psychological Research. 2012;76(2):192-203. https://doi.org/10.1007/s00426-011-0335-6 PMid:21541757 PMCid:PMC3278619

Astori S, Wimmer RD, Lüthi A. Manipulating sleep spindles - expanding views on sleep, memory, and disease. Trends in Neurosciences. 2013;36(12):738-748. https://doi.org/10.1016/j.tins.2013.10.001 PMid:24210901

Gorgoni M, Lauri G, Truglia I, et al. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment. Neural Plasticity. 2016; 2016:e8376108 . https://doi.org/10.1155/2016/8376108

Iber C, Ancoli-Israel S, Chesson AL, Quan S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester, IL: American Academy of Sleep Medicine. Published online January 1, 2007.

Danker-Hopfe H, Kunz D, Gruber G, et al. Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. Journal of Sleep Research. 2004;13(1):63-69. https://doi.org/10.1046/j.1365-2869.2003.00375.x PMid:14996037

Wendt SL, Welinder P, Sorensen HBD, et al. Inter-expert and intra-expert reliability in sleep spindle scoring. Clinical Neurophysiology. 2015;126(8):1548-1556. https://doi.org/10.1016/j.clinph.2014.10.158 PMid:25434753 PMCid:PMC4426257

Güneş S, Dursun M, Polat K, Yosunkaya Ş. Sleep spindles recognition system based on time and frequency domain features. Expert Systems with Applications. 2011;38(3):2455- 2461. https://doi.org/10.1016/j.eswa.2010.08.034

Loomis Alfred L., Harvey E. Newton, Hobart Garret. Potential Rhythms of the Cerebral Cortex During Sleep. Science.1935;81(2111): 597-598. https://doi.org/10.1126/science.81.2111.597 PMid:17739875

De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Medicine Reviews. 2003; 7(5):423-440. https://doi.org/10.1053/smrv.2002.0252 PMid:14573378

Berry RB, Wagner MH. Sleep Medicine Pearls E-Book. Elsevier Health Sciences; 2014.

Schönauer M, Pöhlchen D. Sleep spindles. Current Biology. 2018;28(19):R1129-R1130. https://doi.org/10.1016/j.cub.2018.07.035 PMid:30300592

Devuyst S, Dutoit T, Kerkhofs M. The DREAMS databases and assessment algorithm. Zenodo, Genève. Published online 2005.

Purcell SM, Manoach DS, Demanuele C, et al. Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource. Nature Communications. 2017;8(1): 15930. https://doi.org/10.1038/ncomms15930 PMid:28649997 PMCid:PMC5490197

Sitnikova E, Grubov V, Hramov AE. Slow-wave activity preceding the onset of 10-15-Hz sleep spindles and 5-9-Hz oscillations in electroencephalograms in rats with and without absence seizures. Journal of Sleep Research. 2020;29(6):e12927. https://doi.org/10.1111/jsr.12927 PMid:31578791

Keenan S, Hirshkowitz M. Chapter 161 - Sleep Stage Scoring. In: Kryger M, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine (Sixth Edition). Elsevier; 2017:1567-1575.e3. https://doi.org/10.1016/B978-0-323-24288-2.00161-6

Koubeissi MZ. Niedermeyer's Electroencephalography, Basic Principles, Clinical Applications, and Related Fields, 6th ed. Archives of Neurology. 2011;68(11):1481-1481. https://doi.org/10.1001/archneurol.2011.251

Warby SC, Wendt SL, Welinder P, et al. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nature Methods. 2014;11(4):385-392. https://doi.org/10.1038/nmeth.2855 PMid:24562424 PMCid:PMC3972193

Werth E, Achermann P, Dijk DJ, Borbély AA. Spindle frequency activity in the sleep EEG: individual differences and topographical distribution. Electroencephalography and Clinical Neurophysiology. 1997;103(5):535-542. https://doi.org/10.1016/S0013-4694(97)00070-9 PMid:9402884

Coppieters 't Wallant D, Maquet P, Phillips C. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods. Timofeev I, ed. Neural Plasticity. 2016; 2016:6783812. https://doi.org/10.1155/2016/6783812 PMid:27478649 PMCid:PMC4958487

Parekh A, Selesnick IW, Osorio RS, Varga AW, Rapoport DM, Ayappa I. Multichannel sleepspindle detection using sparse low-rank optimization. Journal of Neuroscience Methods. 2017;288:1-16. https://doi.org/10.1016/j.jneumeth.2017.06.004 PMid:28600157

Nonclercq A, Urbain C, Verheulpen D, Decaestecker C, Van Bogaert P, Peigneux P. Sleep spindle detection through amplitude- frequency normal modelling. Journal of Neuroscience Methods. 2013;214(2):192-203. https://doi.org/10.1016/j.jneumeth.2013.01.015 PMid:23370313

LaRocco J, Franaszczuk PJ, Kerick S, Robbins K. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles. Journal of Neural Engineering. 2018;15(6):066015. https://doi.org/10.1088/1741-2552/aadc1c PMid:30132445

Patti CR, Penzel T, Cvetkovic D. Sleep spindle detection using multivariate Gaussian mixture models. Journal of Sleep Research. 2018; 27(4):e12614. https://doi.org/10.1111/jsr.12614 PMid:29034521

Mei N, Grossberg MD, Ng K, Navarro KT, Ellmore TM. Identifying sleep spindles with multichannel EEG and classification optimization. Computers in Biology and Medicine. 2017;89:441-453. https://doi.org/10.1016/j.compbiomed.2017.08.030 PMid:28886481 PMCid:PMC5650544

O'Reilly C, Gosselin N, Carrier J, Nielsen T. Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research. Journal of Sleep Research. 2014;23(6):628-635. https://doi.org/10.1111/jsr.12169 PMid:24909981

Kulkarni PM, Xiao Z, Robinson EJ, et al. A deep learning approach for real-time detection of sleep spindles. Journal of Neural Engineering. 2019;16(3):036004. https://doi.org/10.1088/1741-2552/ab0933 PMid:30790769 PMCid:PMC6527330

T. Penzel, M. Glos, C. Garcia, C. Schoebel, I. Fietze. The SIESTA database and the SIESTA sleep analyzer. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ; 2011:8323-8326. https://doi.org/10.1109/IEMBS.2011.6092052 PMid:22256276

Adamczyk M, Genzel L, Dresler M, Steiger A, Friess E. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform. Frontiers in Human Neuroscience. 2015;9. https://doi.org/10.3389/fnhum.2015.00624 PMid:26635577 PMCid:PMC4652604

Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased Prevalence of Sleep-Disordered Breathing in Adults. American Journal of Epidemiology. 2013; 177(9):1006-1014. https://doi.org/10.1093/aje/kws342 PMid:23589584 PMCid:PMC3639722

Lacourse K, Delfrate J, Beaudry J, Peppard P, Warby SC. A sleep spindle detection algorithm that emulates human expert spindle scoring. Journal of Neuroscience Methods. 2019;316:3-11. https://doi.org/10.1016/j.jneumeth.2018.08.014 PMid:30107208 PMCid:PMC6415669

Duman F, Erdamar A, Erogul O, Telatar Z, Yetkin S. Efficient sleep spindle detection algorithm with decision tree. Expert Systems with Applications. 2009;36(6):9980-9985. https://doi.org/10.1016/j.eswa.2009.01.061

Huupponen E, Gómez-Herrero G, Saastamoinen A, Värri A, Hasan J, Himanen SL. Development and comparison of four sleep spindle detection methods. Artificial Intelligence in Medicine. 2007;40(3):157-170. https://doi.org/10.1016/j.artmed.2007.04.003 PMid:17555950

B. Babadi, S. M. McKinney, V. Tarokh, J. M. Ellenbogen. DiBa: A Data-Driven Bayesian Algorithm for Sleep Spindle Detection. IEEE Transactions on Biomedical Engineering.2012;59(2):483-493. https://doi.org/10.1109/TBME.2011.2175225 PMid:22084041

T. Shimada, T. Shiina, Y. Saito. Detection of characteristic waves of sleep EEG by neural network analysis. IEEE Transactions on Biomedical Engineering. 2000;47(3):369-379. https://doi.org/10.1109/10.827301 PMid:10743779

Darien, IL. Standard polysomnography. American Association of Sleep Technologists. 2012.

L. Wei, S. Ventura, M. Lowery, et al. Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). ; 2020:58-61. https://doi.org/10.1109/EMBC44109.2020.9176339

Görür D, Halici U, Aydin H, Ongun G, Ozgen F, Leblebicioglu K. Sleep spindles detection using autoregressive modeling. In: ; 2003: 26-29.

Jung T-P, Makeig S, Humphries C, Lee T-W, McKeown MJ, Iragui V, et al. Removing Electroencephalographic Artifacts by Blind Source Separation. Psychophysiology. 2000; 37(2):163-78. https://doi.org/10.1111/1469-8986.3720163

Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Removal of eye activity artifacts from visual eventrelated potentials in normal and clinical subjects. Clin Neurophysiol. 2000;111(10): 1745-1758. https://doi.org/10.1016/S1388-2457(00)00386-2 PMid:11018488

Danasingh AAGS, Subramanian A alias B, Epiphany JL. Identifying redundant features using unsupervised learning for highdimensional data. SN Applied Sciences. 2020;2(8):1367. https://doi.org/10.1007/s42452-020-3157-6

การตรวจจับคลื่นสมอง Sleep spindle แบบ อัตโนมัติ

Downloads

Published

2022-12-29

How to Cite

1.
Promkaew S, Kitudom P, Suwansombat I, Thongbun T, Thavornwattana K, Prom-on S, Hinthong W. A Review on Automatic Detection Methods of Sleep Spindles. J Chulabhorn Royal Acad [Internet]. 2022 Dec. 29 [cited 2024 Dec. 26];5(1):13-26. Available from: https://he02.tci-thaijo.org/index.php/jcra/article/view/255126

Issue

Section

Academic Articles