The effect of accelerated aging on phase transformation and flexural strength of conventional and translucent zirconia-based dental ceramics The effect of accelerated aging on phase transformation and flexural strength of conventional and translucent zirconia-based dental ceramics
Main Article Content
Abstract
Low temperature degradation (LTD) occurs by tetragonal-to-monoclinic phase transformation of yttria-stabilized tetragonal zirconia polycrystal dental ceramics (Y-TZP). In this study, the influence of the hydrothermal aging on phase transformation and flexural strength of Y-TZP ceramics was investigated. Bar-shaped specimens (22.0mmx1.5mmx4.0 mm) of two Y-TZP (Ceramill ZI and Ceramill zolid FX) were subjected to hydrothermal aging at 134˚C under 0.2 MPa for 0, 1 and 2 hours (n=6). The phase transformation (tetragonal-to-monoclinic) was evaluated by x-ray diffraction (XRD). The flexural strength was determined using four-point bending test. The amount of monoclinic phase conversion and flexural strength data were statistically analysed by two-way ANOVA at α=.05. The results from the XRD analysis showed that the monoclinic phase increased from 0.1 to 4.8 % for Ceramill ZI with an increase in the autoclaving time from 0 to 2 hrs, respectively. For Ceramill zolid FX, an increase in monoclinic phase fraction was minor, ranging between 0.8 (control) to 1.7 % after autoclaving for 1 and 2 hrs. The flexural strengths of these materials were not significant different after aging for 2 hours. In conclusion, the hydrothermal aging induced monoclinic-phase transformation in Y-TZP ceramics. However, an increase in monoclinic phase caused from hydrothermal aging in this study did not significantly affect the flexural strength of Ceramill ZI and Ceramill zolid FX.
Article Details
References
2. Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics. 1981; 3: 489-93.
3. Sato T, Shimada M. Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water. J Am Ceram Soc. 1985; 68(6): 356-56.
4. Yoshimura M, Noma T, Kawabata K, Sōmiya S. Role of H2O on the degradation process of of Y-TZP. J Mater Sci Lett. 1987; 6(4): 465-467
5. Swab JJ. Low temperature degradation of Y-TZP materials. J Mater Sci. 1991; 26(24): 6706-14.
6. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J Am Ceram Soc. 2009; 92(9): 1901-20.
7. Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004; 25(24): 5539-45.
8. Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B Appl Biomater. 2005; 72(2): 239-45.
9. Piconi C, Burger W, Richter HG, Cittadini A, Covacci V, Bruzzese N, et al.Y -TZP ceramics for artificial joint replacements. Biomaterials. 1998; 19(16): 1489-94.
10. Raigrodski AJ, Hillstead MB, Meng GK, Chung K-H. Survival and complications of zirconia-based fixed dental prostheses: A systematic review. J Prosthet Dent. 2012; 107(3): 170-77.
11. Klimke J, Trunec M, Krell A. Transparent Tetragonal Yttria-Stabilized Zirconia Ceramics: Influence of Scattering Caused by Birefringence. J Am Ceram Soc. 2011; 94(6): 1850-58.
12. Hallmann L, Mehl A, Ulmer P, Reusser E, Stadlaer J,Zenobi R, et al. The influence of grain size on low-temperature degradation of dental zirconia. J Biomed Mater Res B Appl Biomater. 2012; 100B(2): 447-56.
13. Matsui K, Yamakawa T, Uehara M, Enomoto N, Hojo J. Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder: Influence of Alumina Concentration on the Initial Stage Sintering. J Am Ceram Soc. 2008 ;91(6): 1888-97.
14. Chevalier J, Cales B, Drouin JM. Low-Temperature Aging of Y-TZP Ceramics. J Am Ceram S.1999; 82(8): 2150-54.
15. Molin M, Karlsson S. Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs. Int J Prosthodont. 2008; 21(3): 223-7
16. Sailer I, Feher A, Filser F, et al. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007; 20(4): 383-8.
17. Duwez P, Odell F. Quantitative analysis of cubic and monoclinic zirconia by x-ray diffraction*. J Am Ceram Soc.1949; 32(5): 180-83.
18. Garvie RC, Nicholson PS. Phase Analysis in Zirconia Systems. J Am Ceram Soc.1972; 55(6): 303-05.
19. Toraya H, Yoshimura M, Somiya S. Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction. J Am Ceram Soc. 1984; 67(6): C‐119-C‐21.
20. McCusker L, B. Von Dreele R, E. Cox D, Louer D, Scardi P. Reitveld Refinement Guidelines. J. Appl. Cryst. 1999; 32: 36-50
21. Basilio Mde A, Cardoso KV, Antonio SG, Rizlalla AS, Santos J-GC, Arioli F-JN. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments. J Prosthet Dent. 2016; 116(2): 277-85.
22. Flinn BD, Raigrodski AJ, Singh A, Mancl LA. Effect of hydrothermal degradation on three types of zirconias for dental application. J Prosthet Dent. 2014; 112(6): 1377-84.
23. Siarampi E, Kontonasaki E, Andrikopoulos KS, et al. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. Dent Mater. 2014; 30(12): e306-e16.
24. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HWA. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011; 7(2): 858-65.
25. Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Phase transformation of dental zirconia following artificial aging. J Biomed Mater Res B Appl Biomater. 2015; 103(7): 1519-23.
26. Kim H-T, Han J-S, Yang J-H, Lee J-B, Kim S-H. The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J Adv Prosthodont. 2009; 1(3): 113-17.
27. De Souza GM, Zykus A, Ghahnavyeh RR, Lawrence SK, Bahr DF. Effect of accelerated aging on dental zirconia-based materials. J Mech Behav Biomed Mater. 2017; 65: 256-63.
28. Borchers L, Stiesch M, Bach F-W, Buhl J-C, Hubsch C, Kellner T, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomaterialia. 2010; 6(12): 4547-52.
29. Pinto PA, Colas G, Filleter T, De Souza GM. Surface and Mechanical Characterization of Dental Yttria-Stabilized Tetragonal Zirconia Polycrystals (3Y-TZP) After Different Aging Processes. Microsc Microanal. 2016; 22(6): 1179-88.
30. Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017; 117(2):303-09.
31. Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012; 108(4): 223-30.
32. Lughi V, Sergo V. Low Temperature Degradation-Aging-of Zirconia: A Critical Review of The Relevant Aspects in Dentistry. Dent Mater. 2010: 807-20.
33. ISO.(2015) ISO 13356 Implants for surgery - Ceramic materials based on yttria stabilized tetragonal zirconia (Y-TZP).
34. Lu H-Y, Chen S-Y. Low-Temperature Aging of t-ZrO2 Polycrystals with 3 mol% Y2O3. J Am Ceram Soc. 1987; 70(8): 537-41.
35. Munoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent. 2017; 63: 94-102.