A Novel saliva ejector for effective orthodontic bonding: a laboratory investigation

Main Article Content

Pitchaporn Buranakunaporn
Peerapong Santiwong
Rochaya Chintavalakorn


Objective: To use computer-aided design and computer-aided manufacturing (CAD-CAM) to design a customized saliva ejector in order to investigate the performance of the new saliva ejector compared to the conventional saliva ejector with regards to shear bond strength, adhesive remnants, and bonding time.

Materials and Methods: Forty maxillary human premolars were mounted on acrylic dental models, with four teeth per side. Three-dimensional (3D) scans of the models were made using an intraoral scanner (iTero Element; Align Technologies, San Jose, Calif), then imported into an orthodontic software (OrthoAnalyzer; 3Shape, Copenhagen, Denmark) for bracket placement. The new saliva ejector was fabricated using ethylene-vinyl acetate (EVA) thermoplastic sheets. Orthodontic brackets were bonded on one side of the model using the new saliva ejector, and on the other side using the conventional saliva ejector. The effectiveness of the new saliva ejector was assessed by the duration of the bonding, shear bond strength, and adhesive remnant index (ARI).

Results: No statistically significant differences in shear bond strength were found between the new saliva ejector group (24.73 ± 9.93 MPa) with the conventional saliva ejector group (21.72 ± 1.45 MPa). Bonding time and ARI score did not differ significantly between the two groups either. (p >0.05)

Conclusion: The performance of the new saliva ejector was at least comparable to the conventional type with regard to shear bond strength, adhesive remnants, and bonding time.


Download data is not yet available.

Article Details

How to Cite
Buranakunaporn P, Santiwong P, Chintavalakorn R. A Novel saliva ejector for effective orthodontic bonding: a laboratory investigation. M Dent J [Internet]. 2023 Apr. 12 [cited 2023 Dec. 6];43(1):1-8. Available from: https://he02.tci-thaijo.org/index.php/mdentjournal/article/view/261456
Original articles


​Hickham J. Single-operator sealant placement made easy. J Am Dent Assoc. 2000 Aug;131(8):1175-6. doi: 10.14219/jada.archive.2000.0352.

​Holloman JL, Mauriello SM, Pimenta L, Arnold RR. Comparison of suction device with saliva ejector for aerosol and spatter reduction during ultrasonic scaling. J Am Dent Assoc. 2015 jan;146(1):27-33. doi: 10.1016/j.adaj.2014.10.001.

​Almosa N, Zafar H. Incidence of orthodontic brackets detachment during orthodontic treatment: A systematic review. Pak J Med Sci. 2018 May-Jun;34(3):744-750. doi: 10.12669/pjms.343.15012.

​Romano FL, Valério RA, Gomes-Silva JM, Ferreira JT, Faria G, Borsatto MC. Clinical evaluation of the failure rate of metallic brackets bonded with orthodontic composites. Braz Dent J. 2012;23(4):399-402. doi: 10.1590/s0103-64402012000400015.

​Vijayakumar RK, Jagadeep R, Ahamed F, Kanna A, Suresh K. How and why of orthodontic bond failures: An in vivo study. J Pharm Bioallied Sci. 2014 Jul;6(Suppl 1):S85-89. doi: 10.4103/0975-7406.137394.

​Roelofs T, Merkens N, Roelofs J, Bronkhorst E, Breuning H. A retrospective survey of the causes of bracket- and tube-bonding failures. Angle Orthod. 2017 Jan;87(1):111-117. doi: 10.2319/021616-136.1.

​Jung MH. Survival analysis of brackets and tubes A twelve-month assessment. Angle Orthod. 2014 Nov;84(6):1034-1040. doi: 10.2319/122613-946.1.

​Zachrisson BJ. A posttreatment evaluation of direct bonding in orthodontics. Am J Orthod. 1977 Feb;71(2):173-189. doi: 10.1016/s0002-9416(77)90394-3.

​Toodehzaeim MH, Rezaie N. Effect of Saliva Contamination on Microleakage Beneath Bonded Brackets: A Comparison Between Two Moisture-Tolerant Bonding Systems. J Dent (Tehran). 2015 Oct;12(10):747-755.

​Hobson RS, Ledvinka J. Meechan JG. The effect of moisture and blood contamination on bond strength of a new orthodontic bonding material. Am J Orthod Dentofacial Orthop. 2001 Jul;120(1):54-57. doi: 10.1067/mod.2001.115037.

​Silverstone LM, Hicks MJ, Featherstone MJ. Oral fluid contamination of etched enamel surfaces: an SEM study. J Am Dent Assoc. 1985 Mar;110(3):329-332. doi: 10.14219/jada.archive.1985.0350.

​Iorgulescu G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life. 2009 Jul-Sep;2(3):303-307.

​Årtun J, Bergland S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod. 1984 Apr;85(4):333-340. doi: 10.1016/0002-9416(84)90190-8.

​Shams S, Abela S, Andiappan M, Hajiheshmati A, Bister D. Shear Bond Strengths of 3 Commonly Used Orthodontic Adhesives. Dentistry. 2020;10(568):2161-1122. doi: 10.35248/2161-1122.20.10.568.

​Kaneshima EN, Berger SB, Fernandes TMF, Navarro MFL, Oltramari PVP. Using UV light for adhesive remnant removal after debonding of orthodontic accessories. Braz Oral Res. 2018;32:e47. doi: 0.1590/1807-3107bor-2018.vol32.0047.

​Reynolds IR. A Review of Direct Orthodontic Bonding. Br J Orthod. 1975;2(3):171-178. doi: 10.1080/0301228X.1975.11743666.

​Demirovic K, Slaj M, Spalj S, Slaj M, Kobaslija S. Comparison of Shear Bond Strength of Orthodontic Brackets Using Direct and Indirect Bonding Methods in Vitro and in Vivo. Acta Inform Med. 2018 Jun;26(2):125-129. doi: 10.5455/aim.2018.26.125-129.

​Linn BJ, Berzins DW, Dhuru VB, Bradley TG. A comparison of bond strength between direct- and indirect-bonding methods. Angle Orthod. 2006 Mar;76(2):289-294. doi: 10.1043/0003-3219(2006)076[0289:ACOBSB]2.0.CO;2.

​AlSamak S, Alsaleem NR, Ahmed MK. Evaluation of the shear bond strength and adhesive remnant index of color change, fluorescent, and conventional orthodontic adhesives: An in vitro study. International Orthodontics. 2023 Mar;21(1):100712. doi: 10.1016/j.ortho.2022.100712.

​Wang WN, Li CH, Chou TH, Wang DD, Lin LH, Lin CT. Bond strength of various bracket base designs. Am J Orthod Dentofacial Orthop. 2004 Jan;125(1):65-70. doi: 10.1016/j.ajodo.2003.01.003.

​Bakhadher W, Halawany H, Talic N, Abraham N, Jacob V. Factors Affecting the Shear Bond Strength of Orthodontic Brackets - a Review of In Vitro Studies. Acta Medica (Hradec Kralove). 2015;58(2):43-48. doi: 10.14712/18059694.2015.92.

​Sorel O, El Alam R, Chagneau F, Cathelineau G. Comparison of bond strength between simple foil mesh and laser-structured base retention brackets. Am J Orthod Dentofacial Orthop. 2002 Sep;122(3):260-266. doi: 10.1067/mod.2002.125834.

​Adanir N, Turkkahraman H, Yalçin Güngör A. Effects of adhesion promoters on the shear bond strengths of orthodontic brackets to fluorosed enamel. Eur J Orthod. 2009 Jun;31(3):276-280. doi: 10.1093/ejo/cjn093.

​Rambhia S, Heshmati R, Dhuru V, Iacopino A. Shear bond strength of orthodontic brackets bonded to provisional crown materials utilizing two different adhesives. Angle Orthod. 2009 Jul;79(4):784-789. doi: 10.2319/060908-298.1.

​Guan G, Takano-Yamamoto T, Miyamoto M, Hattori T, Ishikawa K, Suzuki K. Shear bond strengths of orthodontic plastic brackets. Am J Orthod Dentofacial Orthop. 2000 Apr;117(4):438-443. doi: 10.1016/s0889-5406(00)70163-6.

​Bishara SE, Gordan VV, VonWald L, Jakobsen JR. Shear bond strength of composite, glass ionomer, and acidic primer adhesive systems. Am J Orthod Dentofacial Orthop. 1999 Jan;115(1):24-28. doi: 10.1016/s0889-5406(99)70312-4.

​Grünheid T, Sudit GN, Larson BE. Debonding and adhesive remnant cleanup: an in vitro comparison of bond quality, adhesive remnant cleanup, and orthodontic acceptance of a flash-free product. Eur J Orthod. 2015 Oct;37(5):497-502. doi: 10.1093/ejo/cju080.

​Toledano M, Osorio R, Osorio E, Romeo A, de la Higuera B, Garcia-Godoy F. Bond strength of orthodontic brackets using different light and self-curing cements. Angle Orthod. 2003 Feb;73(1):56-63. doi: 10.1043/0003-3219(2003)073<0056:BSOOBU>2.0.CO;2.

​Vasudevan SD, Sundareswaran S. Bonding Characteristics of Improved Low Viscosity Adhesives for Orthodontic Use. J Indian Orthod Soc. 2014;48:262-266. doi: 10.5005/jp-journals-10021-1256.