Effects of frequently consumed beverages by children on the surface roughness of glass ionomer-based materials

Main Article Content

Sarat Suriyasangpetch
Arissara Kannasombat
Pribdao Charumattanont
Tisthong Charoonmethee
Apichaya Manopetchkasem

Abstract

Objective: The aim of this study was to evaluate and compare the surface roughness changes of various glass ionomer-based restorative materials when exposed to beverages commonly consumed by children.


Materials and Methods: A total of 144 discs (7 x 1.2 mm) were prepared from four different GI-based materials: conventional glass ionomer cement (GIC–Fuji IX), resin-modified glass ionomer cement (RMGIC–Fuji II LC), zirconia-reinforced glass ionomer (Zr-GI–Zirconomer Improve), and giomer (Beautifil X injectable). Each material group (n=36) was divided into four subgroups (n=9) and immersed in distilled water, grape juice, cola, or chocolate milk for 7 days. The surface roughness values were measured using a non-contact profilometer before and after immersion. The data were analyzed using the Wilcoxon signed-rank and Kruskal-Wallis tests (p<0.05).


Results: The surface roughness of the materials ranked from highest to lowest was Zr-GI, GIC, RMGIC, and giomer. No significant differences in surface roughness were observed for any material after 7 days of immersion in the tested solutions.


Conclusion: Exposure to commonly consumed beverages (water, grape juice, cola, and chocolate milk) for one week did not significantly affect the surface roughness of the tested GI-based restorative materials comprising conventional GIC, RMGIC, Zr-GI, and giomer.

Article Details

How to Cite
1.
Suriyasangpetch S, Kannasombat A, Charumattanont P, Charoonmethee T, Manopetchkasem A. Effects of frequently consumed beverages by children on the surface roughness of glass ionomer-based materials. M Dent J [Internet]. 2024 Aug. 2 [cited 2024 Aug. 8];44(2):103-12. Available from: https://he02.tci-thaijo.org/index.php/mdentjournal/article/view/269405
Section
Original articles

References

References

Giacaman RA, Fernández CE, Muñoz-Sandoval C, León S, García-Manríquez N, Echeverría C, et al. Understanding dental caries as a non-communicable and behavioral disease: Management implications. Front Oral Health. 2022 Aug;24(3):764479. doi: 10.3389/froh.2022.764479.

Bureau of Dental Health. The 8th national oral health survey 2017 of Thailand. Bangkok: Department of Health; 2018. (in Thai)

Waggoner WF, Nelson T. 22 - Restorative Dentistry for the Primary Dentition; In Nowak AJ, editors. Pediatric Dentistry. 6th ed. Elsevier, 2019; p.304-328. doi: 10.1016/B978-0-323-60826-8.00022-5

American Academy of Pediatric Dentistry. Pediatricrestorative dentistry. The Reference Manual of Pediatric Dentistry. Chicago, Ill.: American Academy of Pediatric Dentistry; 2023; 443-456.

Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007 Mar;23(3):343-362. doi: 10.1016/j.dental.2006.01.022.

Croll TP, Nicholson JW. Glass ionomer cements in pediatric dentistry: review of the literature. Pediatr Dent. 2002 Sep-Oct;24(5):423-429.

Uno S, Finger WJ, Fritz U. Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater. 1996 Jan;12(1):64-69. doi: 10.1016/S0109-5641(96)80066-2.

Abdulsamee N, Elkhadem AH. Zirconomer and Zirconomer Improved (White Amalgams): Restorative materi- als for the future. Review. EC Dental Science. 2017 Nov;15(4):134-150.

Melo TMTC, Oliveira LR, Brandim AS, Soares LES. Properties of zirconia-containing glass-ionomer cement. Cerâmica. 2019;65:394-399. doi: 10.1590/0366-69132019653752678.

Itota T, Carrick TE, Yoshiyama M, McCabe JF. Fluoride release and recharge in giomer, compomer and resin composite. Dent Mater. 2004 Nov;20(9):789-795. doi: 10.1016/j.dental.2003.11.009.

Najma Hajira NSW, Meena N. GIOMER- The Intelligent Particle (New generation glass ionomer cement). Int J Dent Oral Health. 2016;2(4) doi: 10.16966/2378-7090.166.

Quader SA, Alam MS, Bashar A, Gafur MA, Al-Mansur MA. Compressive strength, fluoride release and recharge of giomer. Updat Dent Coll J. 2013 Jul;2(2):28-37. doi: 10.3329/updcj.v2i2.15533

Ozdemir-Ozenen D, Sungurtekin-Ekci E, OzenenG, Ozdemir-Karatas M. Effect of common daily acidic beverages on the surface roughness of glass ionomer-based dental restorative biomaterials. Glass Phys Chem. 2019 Nov;45(6):496-502. doi: 10.1134/S1087659619060154

Giti R, Dabiri S, Motamedifar M, Derafshi R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One. 2021 Apr 5;16(4):e0249551. doi: 10.1371/journal.pone.0249551.

Savas S, Colgecen O, Yasa B, Kucukyilmaz E. Color stability, roughness, and water sorption/solubility of glass ionomer-Based restorative materials. Niger J Clin Pract. 2019 Jun;22(6):824-832. doi: 10.4103/njcp.njcp_592_18.

Effendi MC, Nugraeni Y, Hartami E, Ummah AN. Changes in the surface roughness of glass ionomer cement and zirconomer after immersion in carbonated beverages. J Dent Indones. 2020 Aug;27(2):85-90. doi: 10.14693/jdi.v27i2.1155

Vieira A, Lugtenborg M, Ruben JL, Huysmans MC. Brushing abrasion of eroded bovine enamel pretreated with topical fluorides. Caries Res. 2006 Feb;40(3):224-30. doi: 10.1159/000092230.

Bagheri R, Burrow MF, Tyas M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. J Dent. 2005 May;33(5):389-398. doi: 10.1016/j.jdent.2004.10.018.

Wunsch NG.[Internet] Types of beverages consumed by children the United States in 2021. United states: Statista; 2021;Apr [cited 2024 May 1] Available from: https://www.statista.com/statistics/1287591/types-of-beverages-consumed-by-children-in-the-us/.

Maganur P, Satish V, Prabhakar AR, Namineni S. Effect of soft drinks and fresh fruit juice on surface roughness of commonly used restorative materials. Int J Clin Pediatr Dent. 2015 Jan-Apr;8(1):1-5. doi: 10.5005/jp-journals-10005-1274.

Bagheri R, Burrow MF, Tyas MJ. Surface characteristics of aesthetic restorative materials - an SEM study. J Oral Rehabil. 2007 Jan;34(1):68-76. doi: 10.1111/j.1365-2842.2006.01608.x.

Bal FA, Karaarslan ES, Buldur M, Agaccioglu M, Demir O. Evaluation of surface roughness and color stability of fluorapatite/hydroxyapatite-containing glass carbomer filling material. J Dent Res Rev. 2022 Jul-Sep;9(3):217-223 doi: 10.4103/jdrr.jdrr_45_22.

Alacote-Mauricio B, Gihuaña-Aguilar C, Castro-Ramirez L, Cervantes-Ganoza L, Ladera-Castañeda M, Dapello-Zevallos G, et al. Color stability in a giomer, a conventional glass ionomer and a resin-modified glass ionomer exposed to different pigment beverages: An in vitro comparative study. J Int Oral Health. 2023 Jul;15(4):357-366. doi: 10.4103/jioh.jioh_93_23.

Belevcikli M, Hazar Bodrumlu E. Effects of frequently consumed beverages by children on the surface roughness of compomers. Am J Dent. 2024 Feb;37(1):19-23.

Birant S, Ilisulu SC, Üçüncü MK. Evaluation of glass ionomer restorative materials' surface roughness and microhardness in vitro after acidic challenge. Essent Dent. 2023 Nov;2(3):87-94. doi: 10.5152/EssentDent.2023.23020

Vorburger TV, Rhee HG, Renegar TB, Song JF, Zheng A. Comparison of optical and stylus methods for measurement of surface texture. Int J Adv Manuf Technol. 2007 Feb;33:110–118. doi: 10.1007/s00170-007-0953-8.

Dong WP, Sullivan PJ, Stout KJ. Comprehensive study of parameters for characterising three-dimensional surface topography: IV: Parameters for characterising spatial and hybrid properties. Wear. 1994. Nov;178(1-2):45-60. doi: 10.1016/0043-1648(94)90128-7.

Hamouda IM. Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. J Esthet Restor Dent. 2011 Oct;23(5):315-322. doi: 10.1111/j.1708-8240.2011.00453.x.

Aliping-McKenzie M, Linden RW, Nicholson JW. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and 'compomers'. J Oral Rehabil. 2004 Nov;31(11):1046-1052. doi: 10.1111/j.1365-2842.2004.01348.x.

Kanchanavasita W, Anstice HM, Pearson GJ. Water sorption characteristics of resin-modified glass-ionomer cements. Biomaterials. 1997 Feb;18(4):343-349. doi: 10.1016/s0142-9612(96)00124-x.

Honório HM, Rios D, Francisconi LF, Magalhães AC, Machado MA, Buzalaf MA. Effect of prolonged erosive pH cycling on different restorative materials. J Oral Rehabil. 2008 Dec;35(12):947-953. doi: 10.1111/j.1365-2842.2008.01856.x.

Cenci MS, Tenuta LM, Pereira-Cenci T, Del Bel Cury AA, ten Cate JM, Cury JA. Effect of microleakage and fluoride on enamel-dentine demineralization around restorations. Caries Res. 2008 Sep;42(5):369-379. doi: 10.1159/000151663.

Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997 Jul;13(4):258-269. doi: 10.1016/s0109-5641(97)80038-3.

Gharechahi M, Moosavi H, Forghani M. Effect of surface roughness and materials composition. J Biomater Nanobiotechnol. 2012 Oct;3(4A):541-546. doi: 10.4236/jbnb.2012.324056.