Effect of accelerated aging on phase transformation and flexural strength of yttria-stabilized tetragonal zirconia dental ceramics
Main Article Content
Abstract
Objectives: The objectives of this study were to investigate the effect of hydrothermal aging on the flexural strength and the transformation behavior of two translucent (Cercon xt ML and Ceramill Zolid FXML) and two conventional (Cercon ht and Ceramill ZI) dental zirconia (Y-TZP).
Materials and methods:Five bar-shaped specimens (1.5 x 4 x 22 mm) of zirconia in each group were subjected to hydrothermal aging process at 134°C under 0.2 MPa for 0, 10 and 50 hours. After aging, the monoclinic-to-tetragonal phase transformation was evaluated using an x-ray diffraction technique. The alteration in material microstructure was observed using a scanning electron microscope. The flexural strength of all specimens was determined using a four-point bending test. Two-way ANOVA was used to analyze the flexural strength values to find the significant differences among groups at α =.05.
Results:The results showed that there was a significant increase in flexural strength of Ceramill ZI and Cercon ht after autoclaving for 10 hours and 50 hours. The flexural strengths of Ceramill Zolid FXML and Cercon xt ML were not significantly different at all autoclaving times. After 50 hours of autoclaving, the monoclinic phase increased from 0.2 to 69.40 wt% for Ceramill ZI, and from 0 to 70.03 wt% for Cercon ht. There was also no relevant effect of aging on grain size or topography at the surface of all Y-TZPs groups.
Conclusions:Prolonged hydrothermal aging caused an increase in monoclinic phase content in conventional dental zirconia and a significant increase in flexural strength was also observed in this group. However, prolonged hydrothermal aging had limited effect on flexural strength and amount of monoclinic phase change observed in the translucent dental zirconia group.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010 Aug;26(8):807-820. doi: 10.1016/j.dental.2010.04.006.
Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2008 Nov; 87(2): 329-337. doi: 10.1002/jbm.b.31107.
Denry IL, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008 Mar; 24(3): 299-307. doi: 10.1016/j.dental.2007.05.007.
Tabatabaian F. Color aspect of monolithic zirconia restorations: A review of the literature. J Prosthodont. 2019 Mar;28(3): 276-287. doi: 10.1111/jopr.12906.
Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380. doi: 10.3290/j.qi.a38057.
Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018 Feb;97(2):140-147. doi: 10.1177/0022034517737483.
Luo XP, Zhang L. Effect of veneering techniques on color and translucency of Y-TZP. J Prosthodont. 2010 Aug;19(6):465-470. doi: 10.1111/j.1532-849X.2010.00610.x.
Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: A systematic review. Int J Prosthodont. 2010 Nov-Dec;23(6):493-502.
Quinn JB, Sundar V, Parry EE, Quinn GD. Comparison of edge chipping resistance of PFM and veneered zirconia specimens. Dent Mater. 2010 Jan;26(1):13-20. doi: 10.1016/j.dental.2009.08.005.
Zhang Y, Lee JJ, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013 Dec;29(12):1201-1208. doi: 10.1016/j.dental.2013.09.004.
Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int. 2016 Jan;42 (1 Pt B): 1077-1085. doi: 10.1016/j.ceramint.2015.09.033.
Stawarczyk, B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016 Jun; 59:128-138. doi: 10.1016/j.jmbbm.2015.11.040.
Hjerppe J, Özcan M. Zirconia: More and More Translucent. Curr Oral Health Rep. 2023; 10:203–211. doi: 10.1007/s40496-023-00344-1.
Kolakarnprasert N, Kaizer MR, Kim DK, Zhang Y. New multi-layered zirconias: composition, microstructure and translucency. Dent Mater. 2019 May;35(5):797-806. doi: 10.1016/j.dental.2019.02.017.
Chevalier J, Gremillard L, Virkar v. A, Clarke R.D. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009; 92(9):1901–1920. doi:10.1111/j.1551-2916.2009.03278.x
Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2021 Oct;108(4):223-230. doi: 10.1016/S0022-3913(12)60166-8.
Yoshimura M, Noma T, Kawabata K, Somiya S. Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett. 1987;6:465–467. doi: 10.1007/BF01756800.
Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Ann Rev Mater Res. 2007;37:1-32. doi: 10.1146/annurev.matsci.37.052506.084250.
Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012 Mar;8(3):1213-1220. doi: 10.1016/j.actbio.2011.11.016.
Alghazzawi TF, Lemons J, Liu PR, Essig ME, Bartolucci AA, Janowski GM. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont. 2012 Jul;21(5):363-369. doi: 10.1111/j.1532-849X.2011.00838.x.
Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials. 2006 Apr;27(10): 2186-2192. doi: 10.1016/j.biomaterials.2005.11.021.
Inokoshi M, Zhang F, Vanmeensel K, De Munck J, Minakuchi S, Naert I, et al. Residual compressive surface stress increases the bending strength of dental zirconia. Dent Mater. 2017 Apr;33(4):e147-e154. doi: 10.1016/j.dental.2016.12.007.
Lange FF, Dunlop GL, Davis BI. Degradation during aging of transformation toughened ZrO2–Y2O3 materials at 250◦C. J Am Ceram Soc. 1986; 69(3): 237-240. doi: 10.1111/j.1151-2916.1986.tb07415.x
Pandoleon P, Kontonasaki E, Kantiranis N, Pliatsikas N, Patsalas P, Papadopoulou L, et al. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent Mater. 2017 Nov;33(11):e385–e392. doi: 10.1016/j.dental.2017.07.011.
Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016 Dec;32(12): e327-e337. doi: 10.1016/j.dental.2016.09.025.
Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc. 2000;83(3):461-487. doi: 10.1111/j.1151-2916.2000.tb01221.x
Kaizer MR, Kolakarnprasert N, Rodrigues C, Chai H, Zhang Y. Probing the interfacial strength of novel multi-layer zirconias. Dent Mater. 2020 Jan;36(1):60-67 doi: 10.1016/j.dental.2019.10.008.
Maharishi A, McLaren EA, White SN. Color- and strength-graded zirconia: Strength, light transmission, and composition. J Prosthet Dent. 2024 Jun;131(6):1236.e1-1236.e9. doi: 10.1016/j.prosdent.2024.03.015.
Schönhoff LM, Lümkemann N, Buser R, Hampe R, Stawarczyk B. Fatigue resistance of monolithic strength-gradient zirconia materials. J Mech Behav Biomed Mater. 2021 Jul;119:104504. doi: 10.1016/j.jmbbm.2021.104504.
Koenig V, Bekaert S, Dupont N, Vanheusden A, Le Goff S, Douillard T, et al. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: Results of a prospective clinical study with ex vivo monitoring. Dent Mater. 2021 Jul;37(7):1134-1149. doi: 10.1016/j.dental.2021.03.008.
Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent. 2013 Jan;109(1):22-29. doi: 10.1016/S0022-3913(13)60005-0.
Bergamo E, da Silva WJ, Cesar PF, Del Bel Cury AA. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols. Oper Dent. 2016 Sep-Oct;41(5):E118-E130. doi: 10.2341/15-154-L.