Effects of Empagliflozin on Progression of Kidney Disease in Thai Type 2 Diabetes

Main Article Content

Saksan Phawattanakul

Abstract

Background: Diabetic nephropathy is a major public health problem worldwide. Previous trials, empagliflozin improved slowed progression of chronic kidney disease in European patients.


Objective: To evaluate renoprotective effects of empagliflozin treatment compared with the other treatments in type 2 diabetic Thai patients.


Methods: This study included 121 diabetic nephropathy patients, and classified to the treatment group (61 patients, empagliflozin 25 mg) and the control group (60 patients, other diabetes drugs). Estimated glomerular filtration rate (eGFR) and urine protein creatinine ratio (UPCR) were monitored and recorded until complete 52 weeks of treatment.


Results: The outcome of 121 diabetic nephropathy patients after 52 weeks of treatment showed that the eGFR of the treatment group (3.13 mL/min/1.73 m2) was increased and vice versa it was decreased in the control group (9.78 mL/min/1.73 m2) (P < .05). The UPCR was decreased in the treatment group (331.6 mg/g) and vice versa it was increased in the control group (147.12 mg/g) (P < .05). There were similar rates of adverse events including acute renal failure, urinary tract infection, and hypoglycemia in both groups (P > .05).


Conclusions: The treatment of type 2 diabetes with empagliflozin could delay a decreasing of glomerular filtration rate and reducing of proteinuria among type 2 diabetic Thai patients.


 

Article Details

How to Cite
1.
Phawattanakul S. Effects of Empagliflozin on Progression of Kidney Disease in Thai Type 2 Diabetes. Rama Med J [Internet]. 2022 Dec. 28 [cited 2024 Mar. 28];45(4):1-15. Available from: https://he02.tci-thaijo.org/index.php/ramajournal/article/view/258675
Section
Original Articles

References

American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care. 2014;37 Suppl 1:S14-S80. doi:10.2337/dc14-S014

Buyadaa O, Magliano DJ, Salim A, Koye DN, Shaw JE. Risk of rapid kidney function decline, all-cause mortality, and major cardiovascular events in nonalbuminuric chronic kidney disease in type 2 diabetes. Diabetes Care. 2020;43(1):122-129. doi:10.2337/dc19-1438

Collins AJ, Foley RN, Herzog C, et al. US renal data system 2012 annual data report. Am J Kidney Dis. 2013;61(1 Suppl 1):A7. doi:10.1053/j.ajkd.2012.11.031

Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrol Dial Transplant. 2012;27 Suppl 3(Suppl 3):iii73-iii80. doi:10.1093/ndt/gfs269

Parving HH, Persson F, Rossing P. Microalbuminuria: a parameter that has changed diabetes care. Diabetes Res Clin Pract. 2015;107(1):1-8. doi:10.1016/j.diabres.2014.10.014

de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65(6):2309-2320. doi:10.1111/j.1523-1755.2004.00653.x

Gorriz JL, Martinez-Castelao A. Proteinuria: detection and role in native renal disease progression. Transplant Rev. 2012;26(1):3-13. doi:10.1016/j.trre.2011.10.002

Cravedi P, Remuzzi G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br J Clin Pharmacol. 2013;76(4):516-523. doi:10.1111/bcp.12104

Parving HH, Lehnert H, Bröchner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870-878. doi:10.1056/NEJMoa011489

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720

Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7(11):845-854. doi:10.1016/S2213-8587(19)30256-6

Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752-772. doi:10.1161/CIRCULATIONAHA.116.021887

US Food and Drug Administration. FDA News Release: FDA approves Jardiance to reduce cardiovascular death in adults with type 2 diabetes. December 02, 2016. Accessed July 22, 2022. https://www.fda.gov/news-events/press-announcements/fda-approves-jardiance-reduce-cardiovascular-death-adults-type-2-diabetes

American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S125-S150. doi:10.2337/dc21-S010

Ali O, Mohiuddin A, Mathur R, Dreyer G, Hull S, Yaqoob MM. A cohort study on the rate of progression of diabetic chronic kidney disease in different ethnic groups. BMJ Open. 2013;3(2):e001855. doi:10.1136/bmjopen-2012-001855

Clarke PM, Glasziou P, Patel A, et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: a multicountry comparative analysis. PLoS Med. 2010;7(2):e1000236. doi:10.1371/journal.pmed.1000236

Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG; DEMAND investigators. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 2006;69(11):2057-2063. doi:10.1038/sj.ki.5000377

Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12(10):566-592. doi:10.1038/nrendo.2016.86

Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098-1102. doi:10.1038/ng.208

Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092-1097. doi:10.1038/ng.207

Kasuga M. KCNQ1, a susceptibility gene for type 2 diabetes. J Diabetes Investig. 2011;2(6):413-414. doi:10.1111/j.2040-1124.2011.00178.x

Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612. doi:10.7326/0003-4819-150-9-200905050-00006

Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335-1380. doi:10.2147/DDDT.S50773

Tang H, Li D, Zhang J, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017;19(8):1106-1115. doi:10.1111/dom.12917

Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323-334. doi:10.1056/NEJMoa1515920

Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644-657. doi:10.1056/NEJMoa1611925

Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347-357. doi:10.1056/NEJMoa1812389

Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262-274. doi:10.7326/0003-4819-159-4-201308200-00007

US Food and Drug Administration. FDA Drug Safety Communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). June 6, 2016. Accessed July 22, 2022. https://www.fda.gov/media/98683/download

Liu J, Li L, Li S, et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci Rep. 2017;7(1):2824. doi:10.1038/s41598-017-02733-w.