Muscle Biopsy: A Useful Tool and Approach for Diagnostic Evaluation of Muscle Disease

Main Article Content

Jariya Waisayarat

Abstract

Muscle biopsy had been used to diagnose muscle disease for a long time because only a few of the disorders show adequate specific clinical features for definite diagnosis. Since the screening of numerous genes is limited to perform, muscle biopsy could be a time and cost effective tool for solving the diagnostic problems. The aim of this review article is to emphasise the importance of muscle biopsy as  a useful tool and approach for diagnostic evaluation of muscle disease. The author describes the procdure for muscle biopsy, specimen handing and the microscopic findings obtained from non-enzyme (tinctorial) and enzymatic histochemical stains correlating with clinical information to achieve the best interpretation results. 

Article Details

How to Cite
Waisayarat, J. (1). Muscle Biopsy: A Useful Tool and Approach for Diagnostic Evaluation of Muscle Disease. Ramathibodi Medical Journal, 38(2), 154-172. Retrieved from https://he02.tci-thaijo.org/index.php/ramajournal/article/view/95930
Section
Review Articles

References

1. Griesinger W. Ueber muskelhypertrophie. Archiv der Heikunde, 1865;6:1-13.

2. Duchenne, GBA. Recherches sur la paralysie musculaire pseudohypertrophique ou paralysie myosclérosique. Arch Gén Méd. 1868;11:5-25.

3. Dubowitz V, Sewry CA, Oldfors A, Lane R. In: Muscle biopsy: A practical approach. Victor Dubowitz, Caroline A, Sewry, Anders Oldfors; with a contribution on toxic and drug-induced myopathies by Russell Lane. 4th ed. Oxford: Saunders Elsevier, 2013:1-94.

4. Engel WK. Focal myopathic changes produced by electromyographic and hypodermic needles. Arch Neurol. 1967;16(5):509-11.

5. Kakulas BA, Adams RD. Diseases of muscle. In: Kakulas BA, Adams RD, editors. Pathological foundations of clinical myology. 4th ed. Philadelphia: Harper and Row, 1985.

6. Waisayarat J, Pornpetchpracha A, Rochanawutanon M. Skeletal muscle studying in non-skeletal disease Thai population: Cadaveric cases. RMJ, 2011;34:190-8.

7. Edwards R. Percutaneous needle biopsy of skeletal muscle in the diagnosis and research. Lancet. 1971;2:593-5.

8. Edwards R, Lewis P, Maunder C, Pearse A. Percutaneous needle biopsy in the diagnosis of muscle disease. Lancet. 1973;2:1070-1.

9. Edwards R, Round J, Jones D. Needle biopsy of skeletal muscle: a review of 10 years’ experience. Muscle Nerve. 1983;6:676-83.

10. Sewry CA, Jimenez-Mallebrera C, Brown SC, Muntoni F. Diseases of muscle. In: Seth Love, David Louis. David W Ellison, editors. Greenfield’s Neuropathology. 8th ed. London: Hodder Arnold. 2008;1725-820.

11. Jungbluth H1, Müller CR, Halliger-Keller B, et al. Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology. 2002;59(2):284-7.

12. Magee KR, Shy GM. A new congenital non-progressive myopathy. Brain. 1956;79(4):610-21.

13. Dubowitz V, Pearse AG. Oxidative enzymes and phosphorylase in central-core disease of muscle. Lancet. 1960;2(7140):23-4.

14. Engel AG, Gomez MR, Groover RV. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc. 1971;46(10):666-81.

15. Ferreiro A, Quijano-Roy S, Pichereau C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71(4):739-49.

16. Jungbluth H, Zhou H, Hartley L, et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology. 2005;65(12):1930-5.

17. Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J. A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet. 2003;12(10):1171-8.

18. Ferreiro A, Monnier N, Romero NB, et al. A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002;51(6):750-9.

19. Fananapazir L, Dalakas MC, Cyran F, Cohn G, Epstein ND. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 1993;90(9):3993-7.

20. Kaindl AM, Rüschendorf F, Krause S, et al. Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet. 2004;41(11):842-8.

21. Dubowitz V. Pathology of experimentally re-innervated skeletal muscle. J Neurol Neurosurg Psychiatry. 1967;30(2):99-110.

22. Engel WK, Brooke MH, Nelson PG. Histochemical studies of denervated or tenotomized cat muscle: illustrating difficulties in relating experimental animal conditions to human neuromuscular diseases. Ann N Y Acad Sci. 1966;138(1):160-85.

23. Shy GM, Engel WK, Somers JE, Wanko T. Nemaline myopathy: A new congenital myopathy Brain. 1963;86:793-810.

24. Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG. Nemaline myopathies. Semin Pediatr Neurol. 2011 Dec;18(4):230-8. doi: 10.1016/j.spen.2011.10.004.

25. Wallgren-Pettersson C, Laing NG. Report of the 70th ENMC International Workshop: nemaline myopathy. Neuromuscul Disord. 2000;10(4-5):299-306.

26. Ryan MM, Schnell C, Strickland CD, et al. Nemaline myopathy: a clinical study of 143 cases. Ann Neurol. 2001;50(3):312-20.

27. Waisayarat J, Suriyonplengsaeng C, Khongkhatithum C, Rochanawutanon M. Severe congenital nemaline myopathy with primary pulmonary lymphangiectasia: unusual clinical presentation and review of the literature. Diagn Pathol. 2015;10:27. doi:10.1186/s13000-015-0270-8.

28. Jacques TS, Holton J, Watts PM, Wills AJ, Smith SE, Hanna MG. Tubular aggregate myopathy with abnormal pupils and skeletal deformities. J Neurol Neurosurg Psychiatry. 2002;73(3):324-6.

29. Kalimo H, Savontaus ML, Lang H, et al. X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann Neurol. 1988;23(3):258-65.

30. Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406(6798):906-10.

31. Spuler S, Carl M, Zabojszcza J, et al. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol. 2008;63(3):323-8. doi:10.1002/ana.21309.

32. Rosales XQ, Gastier-Foster JM, Lewis S, et al. Novel diagnostic features of dysferlinopathies. Muscle Nerve. 2010;42(1):14-21. doi:10.1002/mus.21650.

33. Milone M, Liewluck T, Winder TL, Pianosi PT. Amyloidosis and exercise intolerance in ANO5 muscular dystrophy. Neuromuscul Disord. 2012;22(1):13-5. doi:10.1016/j.nmd.2011.07.005.