Overviews of Data Mining in Hospital Information System

Authors

  • Oraluck Pattanaprateep Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
  • Petcharat Pongcharoensuk Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
  • Sming Kaojarern Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Keywords:

Data mining, Hospital information system, Knowledge discovery in database

Abstract

Hospital information system captures huge data in each hospital database, but currently few knowledge is produced because of its complexity. Data mining has great potential for exploring the hidden patterns in complex data sets of the hospital information system. Introduction to data mining will provide hospital staff understand how data mining discovers and extracts useful patterns from this large data.

References

Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Pearson Addison Wesley; 2006:1-6.

Two Crows Corporation. Introduction to Data Mining and Knowledge Discovery. 3rd ed. Potomac, MD: Two Crows Corporation; 1999:5.

Dillon PM. Data mining: Transforming Business Data into Competitive Advantage and Intellectual Capital. Atlanta, Ga: Information Management Forum; 1998:5-6.

Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. Al Magazine. 1996;17(3)37-54. doi:10.1609/aimag.v17i3.1230.

Ranjan J. Applications of data mining techniques in pharmaceutical industry. J Theoretical Appl Inform Technol. 2007:3:61-76.

Goodwin L, VanDyne M, Lin S, Talbert S. Data mining issues and opportunities for building nursing knowledge. J Biomed Inform. 2003;36(4-5):379-388. doi:10.1016/j.jbi.2003.09.020.

Kaur H, Wasan SK. Empirical study on applications of data mining techniques in healthcare. J Comput Sci. 2006:2(2):194-200. doi:10.3844/jcssp.2006.194.200.

Ridinger M. American Healthways uses SAS to improve patient care. DM review 2002;12:139.

Obenshain MK. Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol. 2004;25(8):690-695. doi:10.1086/502460.

Brossette SE, Sprague AP, Hardin JM, Waites KB, Jones WT, Moser SA. Association rules and data mining in hospital infection control and public health surveillance. J Am Med Inform Assoc. 1998;5(4):373-381. doi:10.1136/jamia.1998.0050373.

Lee SM, Kang JO, Suh YM. Comparison of hospital charge prediction models for colorectal cancer patients: neural network vs. decision tree models. J Korean Med Sci. 2004;19(5):677-681. doi:10.3346/jkms.2004.19.5.677.

Ortega PA, Figueroa CJ, Ruz GA. A Medical Claim Fraud/Abuse Detection System Based on Data Mining: A Case Study in Chile. Paper presented at: International Conference on Data Mining; 2006, Las Vegas, Nevada. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.796&rep=rep1&type=pdf.

Yang WS, Hwang SY, A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst Applications. 2006:31:56-68. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.3882&rep=rep1&type=pdf.

Downloads

Published

2009-06-26

How to Cite

1.
Pattanaprateep O, Pongcharoensuk P, Kaojarern S. Overviews of Data Mining in Hospital Information System. Rama Med J [Internet]. 2009 Jun. 26 [cited 2024 Dec. 22];32(2):95-100. Available from: https://he02.tci-thaijo.org/index.php/ramajournal/article/view/175332

Issue

Section

Review Articles