Crickets as a Protein Source: An Alternative Future Food for Promoting Nutrition and Food Security
DOI:
https://doi.org/10.33165/rmj.2024.47.1.266823Keywords:
Insect, Cricket, Food , NutritionAbstract
Increasing the global population trend potentially affects food security due to the raising food demand. The livestock industries are well known for high greenhouse gas emission production that led to climate change and impacts the environment. Therefore, preparing adequate food sources for future demand and enhancing food security by lowering emission production is the necessary plan. Nowadays, there are edible insects, especially crickets that are used to be food ingredients because of their good nutritive value and obtained high biological value of protein. In addition, crickets farming is required less water, feed, and other resources than other animal live stocks. This made cricket farming less production emission. This review article aimed to present information on edible crickets as a food source of protein by demonstrating the nutritive values of different species of crickets, clinical efficacy from current pieces of evidence, and safety aspects of crickets. The information could be beneficial to nutritionists, dietitians, and other professionals in food and health to generate clinical knowledge on edible crickets and develop food products by using edible crickets to be one the alternative food sources of protein in the future.
References
Sadigov R. Rapid growth of the world population and its socioeconomic results. Sci World J. 2022;2022:8110229. doi:10.1155/2022/8110229 DOI: https://doi.org/10.1155/2022/8110229
Semba RD. The rise and fall of protein malnutrition in global health. Ann Nutr Metab. 2016;69(2):79-88. doi:10.1159/000449175 DOI: https://doi.org/10.1159/000449175
Hermans WJH, Senden JM, Churchward-Venne TA, et al. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr. 2021;114(3):934-944. doi:10.1093/ajcn/nqab115 DOI: https://doi.org/10.1093/ajcn/nqab115
Skrivervik E. Insects’ contribution to the bioeconomy and the reduction of food waste. Heliyon. 2020;6(5):e03934. doi:10.1016/j.heliyon.2020.e03934 DOI: https://doi.org/10.1016/j.heliyon.2020.e03934
Murugu DK, Onyango AN, Ndiritu AK, et al. From farm to fork: crickets as alternative source of protein, minerals, and vitamins. Front Nutr. 2021;8:704002. doi:10.3389/fnut.2021.704002 DOI: https://doi.org/10.3389/fnut.2021.704002
Stull VJ, Finer E, Bergmans RS, et al. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial. Sci Rep. 2018;8(1):10762. doi:10.1038/s41598-018-29032-2 DOI: https://doi.org/10.1038/s41598-018-29032-2
Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci Anim Resour. 2019;39(4):521-540. doi:10.5851/kosfa.2019.e53 DOI: https://doi.org/10.5851/kosfa.2019.e53
Cole MB, Augustin MA, Robertson MJ, Manners JM. The science of food security. NPJ Sci Food. 2018;2:14. doi:10.1038/s41538-018-0021-9 DOI: https://doi.org/10.1038/s41538-018-0021-9
Shi R, Irfan M, Liu G, Yang X, Su X. Analysis of the impact of livestock structure on carbon emissions of animal husbandry: a sustainable way to improving public health and green environment. Front Public Health. 2022;10:835210. doi:10.3389/fpubh.2022.835210 DOI: https://doi.org/10.3389/fpubh.2022.835210
Moruzzo R, Mancini S, Guidi A. Edible insects and sustainable development goals. Insects. 2021;12(6):557. doi:10.3390/insects12060557 DOI: https://doi.org/10.3390/insects12060557
Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One. 2010;5(12):e14445. doi:10.1371/journal.pone.0014445 DOI: https://doi.org/10.1371/journal.pone.0014445
Elhassan M, Wendin K, Olsson V, Langton M. Quality aspects of insects as food-nutritional, sensory, and related concepts. Foods. 2019;8(3):95.doi:10.3390/foods8030095 DOI: https://doi.org/10.3390/foods8030095
Quinteros MF, Martínez J, Barrionuevo A, Rojas M, Carrillo W. Functional, antioxidant, and anti-inflammatory properties of cricket protein concentrate (Gryllus assimilis). Biology (Basel). 2022;11(5):776. doi:10.3390/biology11050776 DOI: https://doi.org/10.3390/biology11050776
Kowalczewski PŁ, Gumienna M, Rybicka I, et al. Nutritional value and biological activity of gluten-free bread enriched with cricket powder. Molecules. 2021;26(4):1184. doi:10.3390/molecules26041184 DOI: https://doi.org/10.3390/molecules26041184
Mafu A, Ketnawa S, Phongthai S, Schönlechner R, Rawdkuen S. Whole wheat bread enriched with cricket powder as an alternative protein. Foods. 2022;11(14):2142. doi:10.3390/foods11142142 DOI: https://doi.org/10.3390/foods11142142
Pornpimol R, Naret M, Jittawan K, Sirithon S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res Int. 2010;43(1):350-355. doi:10.1016/j.foodres.2009.10.014 DOI: https://doi.org/10.1016/j.foodres.2009.10.014
Kemsawasd V, Inthachat W, Suttisansanee U, Temviriyanukul P. Road to the red carpet of edible crickets through integration into the human food chain with biofunctions and sustainability: a review. Int J Mol Sci. 2022;23(3):1801. doi:10.3390/ijms23031801 DOI: https://doi.org/10.3390/ijms23031801
Udomsil N, Imsoonthornruksa S, Gosalawit C, Ketudat-Cairns M. Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Sci Technol Res. 2019;25(4):597-605. doi:10.3136/fstr.25.597 DOI: https://doi.org/10.3136/fstr.25.597
Oibiokpa FI, Akanya HO, Jigam AA, Saidu AN, Egwim EC. Protein quality of four indigenous edible insect species in Nigeria. Food Sci Hum Wellness. 2018;7(2):175-183. doi:10.1016/j.fshw.2018.05.003 DOI: https://doi.org/10.1016/j.fshw.2018.05.003
Ghosh S, Lee SM, Jung C, Meyer-Rochow VB. Nutritional composition of five commercial edible insects in South Korea. J Asia Pac Entomol. 2017;20(2):686-694. doi:10.1016/j.aspen.2017.04.003 DOI: https://doi.org/10.1016/j.aspen.2017.04.003
Magara HJO, Niassy S, Ayieko MA, et al. Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits-a review. Front Nutr. 2021;7:537915. doi: 10.3389/fnut.2020.537915 DOI: https://doi.org/10.3389/fnut.2020.537915
Fashakin OO, Tangjaidee P, Unban K, et al. Isolation and identification of antioxidant peptides derived from cricket (Gryllus bimaculatus) protein fractions. Insects. 2023;14(8):674. doi:10.3390/insects14080674 DOI: https://doi.org/10.3390/insects14080674
Karna KK, Choi NY, Kim CY, Kim HK, Shin YS, Park JK. Gui-A-Gra attenuates testicular dysfunction in varicocele-induced rats via oxidative stress, ER stress and mitochondrial apoptosis pathway. Int J Mol Sci. 2020;21(23):9231. doi:10.3390/ijms21239231 DOI: https://doi.org/10.3390/ijms21239231
Park WJ, Han JS. Gryllus bimaculatus extract protects against lipopolysaccharide and palmitate-induced production of proinflammatory cytokines and inflammasome formation. Mol Med Rep. 2021;23(3):206. doi:10.3892/mmr.2021.11845 DOI: https://doi.org/10.3892/mmr.2021.11845
Park SA, Lee GH, Lee HY, Hoang TH, Chae HJ. Glucose-lowering effect of Gryllus bimaculatus powder on streptozotocin-induced diabetes through the AKT/mTOR pathway. Food Sci Nutr. 2019;8(1):402-409. doi:10.1002/fsn3.1323 DOI: https://doi.org/10.1002/fsn3.1323
Navarro Del Hierro J, Gutiérrez-Docio A, Otero P, Reglero G, Martin D. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020;309:125742. doi:10.1016/j.foodchem.2019.125742 DOI: https://doi.org/10.1016/j.foodchem.2019.125742
Yoon S, Wong NAK, Chae M, Auh JH. Comparative characterization of protein hydrolysates from three edible insects: mealworm larvae, adult crickets, and silkworm pupae. Foods. 2019;8(11):563. doi:10.3390/foods8110563 DOI: https://doi.org/10.3390/foods8110563
Sicherer SH, Sampson HA. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41-58. doi:10.1016/j.jaci.2017.11.003 DOI: https://doi.org/10.1016/j.jaci.2017.11.003
De Marchi L, Mainente F, Leonardi M, et al. Allergenicity assessment of the edible cricket Acheta domesticus in terms of thermal and gastrointestinal processing and IgE cross-reactivity with shrimp. Food Chem. 2021;359:129878. doi:10.1016/j.foodchem.2021.129878 DOI: https://doi.org/10.1016/j.foodchem.2021.129878
Wangorsch A, Jamin A, Spiric J, et al. Allergic reaction to a commercially available insect snack caused by house cricket (Acheta domesticus) tropomyosin. Mol Nutr Food Res. 2024:e2300420. doi:10.1002/mnfr.202300420 DOI: https://doi.org/10.1002/mnfr.202300420
Liceaga AM. Edible insects, a valuable protein source from ancient to modern times. Adv Food Nutr Res. 2022;101:129-152. doi:10.1016/bs.afnr.2022.04.002 DOI: https://doi.org/10.1016/bs.afnr.2022.04.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ramathibodi Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.