3D Printing Process for Patient-Specific Models and Applications

Authors

  • Chawaphol Direkwatana Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand https://orcid.org/0009-0000-6901-8880
  • Nichapat Rattanapan Medical Innovations Development (MIND) Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

DOI:

https://doi.org/10.33165/rmj.48.02.e270830

Keywords:

3D printing technology, Medical 3D printing, Patient-specific model, Additive manufacturing

Abstract

In the past decade, 3D printing has emerged as a game-changing technology in medicine, particularly in the creation of patient-specific models and applications. Patient-specific models are generated from medical imaging data (such as CT scans or MRI), allowing for precise replication of a patient’s anatomy. Modeling software helps visualize, analyze, and modify data, ensuring its accuracy and providing valuable insights for decision-making and problem-solving. This article explores the 3D printing processes that are used to create patient-specific models tailored to the unique anatomical and medical needs of individuals. The ability to produce highly accurate and customized models have improved surgical outcomes, reduced risks, and accelerated innovation. The applications include presurgical planning, prosthetics design, implant development, medical device advancement, and education for healthcare professionals. This article will also explore how the 3D printing process improves our understanding of the medical applications of various techniques such as material extrusion, vat polymerization, and powder bed fusion. 3D printing materials offer a variety of properties, including flexibility, rigidity, and cellular structures, making them suitable for a wide range of applications, despite the challenges of material limitations, cost, and ambiguous regulations. In the future, point-of-care in healthcare will rely on the potential of 3D printing to transform medical practice by providing personalized, patient-centered care through innovative applications of additive manufacturing technology.

References

Paul GM, Rezaienia A, Wen P, et al. Medical applications for 3D printing: recent developments. Mo Med. 2018;115(1):75-81.

Verner I, Merksamer A. Digital design and 3D printing in technology teacher education. Procedia CIRP. 2015;36:182-186. doi:10.1016/j.procir.2015.08.041

Yan Q, Dong H, Su J, et al. A review of 3D printing technology for medical applications. Engineering. 2018;4(5):729-742. doi:10.1016/j.eng.2018.07.021

Xu S, Ahmed S, Momin M, Hossain A, Zhou T. Unleashing the potential of 3D printing soft materials. Device. 2023;1(3):100067. doi:10.1016/j.device.2023.100067

Radfar P, Bazaz S. R, Mirakhorli F, Warkiani ME. The role of 3D printing in the fight against COVID-19 outbreak. J 3D Print Med. 2021;5(1):51-60. doi:10.2217/3dp-2020-0028

Paramasivam V, Sindhu, Singh G, Santhanakrishnan S. 3D printing of human anatomical models for preoperative surgical planning. Procedia Manuf. 2020;48(4):684-690. doi:10.1016/j.promfg.2020.05.100

Sugand K, Malik HH, Newman S, Spicer D, Reilly P, Gupte CM. Does using anatomical models improve patient satisfaction in orthopaedic consenting? Single-blinded randomised controlled trial. Surgeon. 2019;17(3):146-155. doi:10.1016/j.surge.2019.02.002

Traynor G, Shearn AI, Milano EG, et al. The use of 3D-printed models in patient communication: a scoping review. J 3D Print Med. 2022;6(1):13-23. doi:10.2217/3dp-2021-0021

Larobina M. Thirty years of the DICOM standard. Tomography. 2023;9(5):1829-1838. doi:10.3390/tomography9050145

Mamdouh R, El-Bakry H, Riad A, El-Khamisy N. Converting 2D-medical image files “DICOM” into 3D-models, based on image processing, and analyzing their results with python programming. WSEAS Trans Comput. 2020;19:10-20. doi:10.37394/23205.2020.19.2

Tam MD, Laycock SD, Bell D, Chojnowski A. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep. 2012;6(1):31-37. doi:10.3941/jrcr.v6i1.889

Wake N, Alexander AE, Christensen AM, et al. Creating patient-specific anatomical models for 3D printing and AR/VR: a supplement for the 2018 Radiological Society of North America (RSNA) hands-on course. 3D Print Med. 2019;5(1):17. doi:10.1186/s41205-019-0054-y

Ravikumar RK, Sivaraj S, Veeman D, Pravin Prabhagar VS, Srinivas SJ. Strength of 3D prints with variable print orientation. J Phys Conf Ser. 2021;2027(1):012021. doi:10.1088/1742-6596/2027/1/012021

Edelmers E, Kazoka D, Pilmane M. Creation of anatomically correct and optimized for 3D printing human bones models. Appl Syst Innov. 2021;4(3):67. doi:10.3390/asi4030067

Chung M, Radacsi N, Robert C, et al. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry. 3D Print Med. 2018;4(1):2. doi:10.1186/s41205-017-0023-2

Garcia-Leiner M, Ghita O, McKay R, Kurtz SM. Chapter 7 - Additive Manufacturing of Polyaryletherketones. In: Kurtz SM, ed. PEEK Biomaterials Handbook. 2nd ed. William Andrew Publishing; 2019:89-103. doi:10.1016/B978-0-12-812524-3.00007-7

Zhang C, Wang L, Kang J, Fuentes OM, Li D. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. J Mech Behav Biomed Mater. 2020;103:103561. doi:10.1016/j.jmbbm.2019.103561

Wang L, Yang C, Sun C, et al. Fused deposition modeling PEEK implants for personalized surgical application: from clinical need to biofabrication. Int J Bioprint. 2022;8(4):615. doi:10.18063/ijb.v8i4.615

Kang J, Wang L, Yang C, et al. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018;17(4):1083-1092. doi:10.1007/s10237-018-1015-x

Raje V, Palekar S, Banella S, Patel K. Tunable drug release from fused deposition modelling (FDM) 3D-printed tablets fabricated using a novel extrudable polymer. Pharmaceutics. 2022;14(10):2192. doi:10.3390/pharmaceutics14102192

Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021;330:821-841. doi:10.1016/j.jconrel.2020.10.056

Iqbal H, Fernandes Q, Idoudi S, Basineni R, Billa N. Status of polymer fused deposition modeling (FDM)-based three-dimensional printing (3DP) in the pharmaceutical industry. Polymers (Basel). 2024;16(3):386. doi:10.3390/polym16030386

Hull CW. Apparatus for Production of Three-Dimensional Objects by Stereolithography. 3D Systems Inc; 1986. Accessed 23 December 2024. https://patents.google.com/patent/US4575330A/en

Robinson SS, Aubin CA, Wallin TJ, et al. Stereolithography for personalized left atrial appendage occluders. Adv Mater Technol. 2018;3(12):1800233. doi:10.1002/admt.201800233

Jang G, Kim SK, Heo SJ, Koak JY. Fit analysis of stereolithography-manufactured three-unit resin prosthesis with different 3D-printing build orientations and layer thicknesses. J Prosthet Dent. 2024;131(2):301-312. doi:10.1016/j.prosdent.2021.11.031

Bannink T, Bouman S, Wolterink R, van Veen R, van Alphen M. Implementation of 3D technologies in the workflow of auricular prosthetics: a method using optical scanning and stereolithography 3D printing. J Prosthet Dent. 2021;125(4):708-713. doi:10.1016/j.prosdent.2020.03.022

Stravinskas K, Shahidi A, Kapustynskyi O, Matijošius T, Vishniakov N, Mordas G. Characterization of SLA-printed ceramic composites for dental restorations. Lith J Phys. 2024;64(3):203-213. doi:10.3952/physics.2024.64.3.5

Kulinowski P, Malczewski P, Pesta E, et al. Selective laser sintering (SLS) technique for pharmaceutical applications—development of high-dose controlled release printlets. Addit Manuf. 2021;38:101761. doi:10.1016/j.addma.2020.101761

Ghanizadeh Tabriz A, Kuofi H, Scoble J, Boulton S, Douroumis D. Selective laser sintering for printing pharmaceutical dosage forms. J Drug Deliv Sci Technol. 2023;86:104699. doi:10.1016/j.jddst.2023.104699

Ramaraju H, Landry AM, Sashidharan S, et al. Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support. Biomaterials. 2022;289:121702. doi:10.1016/j.biomaterials.2022.121702

Narra SP, Mittwede PN, DeVincent Wolf S, Urish KL. Additive manufacturing in total joint arthroplasty. Orthop Clin North Am. 2019;50(1):13-20. doi:10.1016/j.ocl.2018.08.009

Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater. 2023;156:125-145. doi:10.1016/j.actbio.2022.06.002

Chacón JM, Núñez PJ, Caminero MA, García-Plaza E, Vallejo J, Blanco M. 3D printing of patient-specific 316L–stainless–steel medical implants using fused filament fabrication technology: two veterinary case studies. Bio-des Manuf. 2022;5(4):808-815. doi:10.1007/s42242-022-00200-8

Lee SS, Du X, Smit T, et al. 3D-printed LEGO®-inspired titanium scaffolds for patient-specific regenerative medicine. Biomater Adv. 2023;154:213617. doi:10.1016/j.bioadv.2023.213617

Yang WF, Choi WS, Wong MC, et al. Three-dimensionally printed patient-specific surgical plates increase accuracy of oncologic head and neck reconstruction versus conventional surgical plates: a comparative study. Ann Surg Oncol. 2021;28(1):363-375. doi:10.1245/s10434-020-08732-y

Mehboob H, Tarlochan F, Mehboob A, et al. A novel design, analysis, and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J Mater Sci Mater Med. 2020;31(1):78. doi:10.1007/s10856-020-06420-7

Park JH, Odkhuu M, Cho S, Li J, Park BY, Kim JW. 3D-printed titanium implant with pre-mounted dental implants for mandible reconstruction: a case report. Maxillofac Plast Reconstr Surg. 2020;42(1):28. doi:10.1186/s40902-020-00272-5

Chakraborty A, Das A, Datta P, Majumder S, Barui A, Roychowdhury A. 3D printing of Ti-6Al-4V-based porous-channel dental implants: computational, biomechanical, and cytocompatibility analyses. ACS Appl Bio Mater. 2023;6(10):4178-4189. doi:10.1021/acsabm.3c00403

Sandre C, De Bernardez LS, Poggi L, Sanguinetti JM. Application of material jetting technology for the development of incision and closure surgical devices. Mater Today Proc. 2022;70:673-677. doi:10.1016/j.matpr.2022.10.068

Luchetti PC, Poggi L. Incision and Closure Surgical Device. Inclode; 2021. Accessed 23 December 2024. https://patents.google.com/patent/US11051816B2/en

Valls-Esteve A, Tejo-Otero A, Lustig-Gainza P, et al. Patient-specific 3D printed soft models for liver surgical planning and hands-on training. Gels. 2023;9(4):339. doi:10.3390/gels9040339

Salehi M, Neo DWK, Rudel V, et al. Digital manufacturing of personalized magnesium implants through binder jet additive manufacturing and automated post machining. J Magnes Alloy. 2024;12(8):3308-3324. doi:10.1016/j.jma.2024.07.027

Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific bioinks for 3d bioprinting of tissue engineering scaffolds. Adv Healthc Mater. 2018;7(11):e1701347. doi:10.1002/adhm.201701347

Subbiah U, Rajaram V, Mahendra J, Kannan LP, Chellathurai BN, Namasivayam A. Biomimetic scaffold and 3D bioprinting in dental application: a review. Bioinformation. 2024;20(7):789-794. doi:10.6026/973206300200789

van Daal M, de Kanter AJ, Bredenoord AL, de Graeff N. Personalized 3D printed scaffolds: the ethical aspects. N Biotechnol. 2023;78:116-122. doi:10.1016/j.nbt.2023.10.006

Deane AS, Byers KT. A review of the ethical considerations for the use of 3D printed materials in medical and allied health education and a proposed collective path forward. Anat Sci Educ. 2024;17(6):1164-1173. doi:10.1002/ase.2483

Desselle MR, Wagels M, Chamorro-Koc M, Caldwell GA. How is point-of-care 3D printing influencing medical device innovation? a survey on an Australian public healthcare precinct. J 3D Print Med. 2023;7(1):3DP005. doi:10.2217/3dp-2022-0024

Chaudhuri A, Naseraldin H, Narayanamurthy G. Healthcare 3D printing service innovation: resources and capabilities for value co-creation. Technovation. 2023;121:102596. doi:10.1016/j.technovation.2022.102596

Downloads

Published

2025-05-30

How to Cite

1.
Direkwatana C, Rattanapan N. 3D Printing Process for Patient-Specific Models and Applications. Res Med J [internet]. 2025 May 30 [cited 2025 Dec. 30];48(2):e270830. available from: https://he02.tci-thaijo.org/index.php/ramajournal/article/view/270830

Issue

Section

Review Articles