Enhancing the Performance of the CDC Protocol for Real-Time RT-PCR Detection of Influenza A Virus via Post-PCR Melting Curve Analysis

Authors

  • Treewat Watthanachokchai Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • Kingkan Rakmanee Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • Pichet Yutthanakarnwikom Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • Ekawat Pasomsub Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand https://orcid.org/0000-0002-4344-0490

DOI:

https://doi.org/10.33165/rmj.48.04.e274725

Keywords:

Real-time RT-PCR, Melting curve analysis, Influenza A virus

Abstract

Background: Influenza has a significant impact on health, society and the economy worldwide.

Objective: To enhance the accuracy and precision of influenza A virus detection.

Methods: Detection of viral genetic material was performed using real-time reverse transcription-polymerase chain reaction (RT-PCR), followed by melting curve analysis of the real-time RT-PCR product.

Results: To enhance diagnostic performance, a novel in-house melting curve analysis assay developed for real-time RT-PCR product, achieving a sensitivity of 96.06% (95% CI, 91.05-98.71) and specificity of 100.00% (95% CI, 95.94-100.00). The assay also demonstrated a positive predictive value of 100.00% (95% CI, 97.02-100.00), a negative predictive value of 94.68% (95% CI, 88.29-97.68) and an accuracy of 97.69% (95% CI, 94.68-99.24). The assay showed high concordance with the NxTAG® Respiratory Pathogen Panel (equation, 0.95; 95% CI, 0.91-0.99; SE, 0.02; P < .001).

Conclusions: This study demonstrated that post-PCR amplicon analysis via melting curve analysis can be performed in a single tube without interference from the hydrolysis probe. Integrating both methods into the same workflow reduces turnaround time for repeat testing, lowers costs, and minimizes labor requirements. As a result, this combined approach improves the efficiency, sensitivity, and specificity of influenza A virus detection, making it a robust tool for laboratory diagnostics.

References

Influenza in children. Paediatr Child Health. 2005;10(8):485-487. doi:10.1093/pch/10.8.485

Liang Y. Pathogenicity and virulence of influenza. Virulence. 2023;14(1):2223057. doi:10.1080/21505594.2023.2223057

Couch RB. Orthomyxoviruses. In: Baron S, ed. Medical Microbiology. 4th ed. University of Texas Medical Branch at Galveston; 1996.

Noda T. Native morphology of influenza virions. Front Microbiol. 2012;2:269. doi:10.3389/fmicb.2011.00269

Winter G, Fields S. Nucleotide sequence of human influenza A/PR/8/34 segment 2. Nucleic Acids Res. 1982;10(6):2135-2143. doi:10.1093/nar/10.6.2135

Centers for Disease Control and Prevention. Avian Influenza Type A Viruses. 20 December 2024. Accessed 1 August 2025. https://www.cdc.gov/bird-flu/about/avian-influenza-type-a.html

Kim H, Webster RG, Webby RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174-183. doi:10.1089/vim.2017.0141

Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49-D53. doi:10.1016/j.vaccine.2008.07.039

World Health Organization. Influenza (seasonal). 28 February 2025. Accessed 1 August 2025. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

Jonas OB. Pandemic Risk. World Bank; 2013. Accessed 1 August 2025. https://www.worldbank.org/content/dam/Worldbank/document/HDN/Health/WDR14_bp_Pandemic_Risk_Jonas.pdf

Spackman E, Suarez DL. Type A influenza virus detection and quantitation by real-time RT-PCR. Methods Mol Biol. 2008;436:19-26. doi:10.1007/978-1-59745-279-3_4

Shu B, Wu KH, Emery S, et al. Design and performance of the CDC Real-Time Reverse Transcriptase PCR Swine Flu Panel for detection of 2009 A (H1N1) pandemic influenza virus. J Clin Microbiol. 2011;49(7):2614-2619. doi:10.1128/JCM.02636-10

Nagy A, Černíková L, Vitásková E, et al. Correction: Meltman: optimization, evaluation, and universal application of a qPCR system integrating the TaqMan qPCR and melting analysis into a single assay. PLoS One. 2018;13(4):e0196444. doi:10.1371/journal.pone.0196444

Luminex. Luminex Detection Methods - Molecular Diagnostics & Life Sciences YouTube page. 13 November 2017. Accessed 1 August 2025. https://www.youtube.com/watch?v=oJcDk5I39y8

Lind K, Ståhlberg A, Zoric N, Kubista M. Combining sequence-specific probes and DNA binding dyes in real-time PCR for specific nucleic acid quantification and melting curve analysis. Biotechniques. 2006;40(3):315-319. doi:10.2144/000112101

Cheah ES, Malkin J, Free RC, et al. A two-tube combined TaqMan/SYBR green assay to identify mycobacteria and detect single global lineage-defining polymorphisms in Mycobacterium tuberculosis. J Mol Diagn. 2010;12(2):250-256. doi:10.2353/jmoldx.2010.090030

Van Poucke M, Van Zeveren A, Peelman LJ. Letter to the editor: combined FAM-labeled TaqMan probe detection and SYBR green I melting curve analysis in multiprobe qPCR genotyping assays. Biotechniques. 2012;52(2):81-86. doi:10.2144/000113808

Duh D, Blažič B. Single mutation in the matrix gene of seasonal influenza A viruses critically affects the performance of diagnostic molecular assay. J Virol Methods. 2018;251:43-45. doi:10.1016/j.jviromet.2017.10.007

Downloads

Published

2025-10-10

How to Cite

1.
Watthanachokchai T, Rakmanee K, Yutthanakarnwikom P, Pasomsub E. Enhancing the Performance of the CDC Protocol for Real-Time RT-PCR Detection of Influenza A Virus via Post-PCR Melting Curve Analysis. Res Med J [internet]. 2025 Oct. 10 [cited 2025 Dec. 28];48(4):e274725. available from: https://he02.tci-thaijo.org/index.php/ramajournal/article/view/274725

Issue

Section

Original Articles