[2026-01-26] The Role and Impact of Artificial Intelligence in Shaping Resident Doctor Education
DOI:
https://doi.org/10.33165/rmj.2026.e275028Keywords:
Artificial intelligence, Medical education, Residency training, Curriculum design, Clinical simulationAbstract
Artificial intelligence (AI) holds immense potential to transform resident doctor education by offering personalized, adaptive learning experiences and enhancing clinical skill development. Drawing from a literature search of key academic databases for articles published between 2018 and 2024, this review explores the current applications, benefits, challenges, and future directions of AI integration into residency training programs. AI facilitates structured curriculum design, enabling customized pathways based on individual resident needs and performance data. It enhances mentorship and monitoring through virtual tutors, improved accessibility, and data-rich workplace-based assessments, while complementing traditional human oversight. AI-driven simulations provide safe environments for procedural practice with immediate, objective feedback, showing promise in specialties like radiology, dermatology, and ophthalmology. However, significant challenges remain, including the need for robust validation, addressing risks of over-reliance that may hinder critical thinking, managing medicolegal concerns, ensuring faculty development, and meeting infrastructure requirements. Concerns about AI's impact on the job market also influence residents. Successfully leveraging AI requires addressing these challenges through further research, developing ethical guidelines, and integrating AI literacy throughout medical training to prepare future physicians effectively.
References
Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 4th ed. Pearson; 2020. http://lib.ysu.am/disciplines_bk/efdd4d1d4c2087fe1cbe03d9ced67f34.pdf
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255-260. doi:10.1126/science.aaa8415
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175. doi:10.1136/bjophthalmol-2018-313173
Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199-2200. doi:10.1001/jama.2018.17163
Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2018;46(4):547-553. doi:10.1097/CCM.0000000000002936
Schneider P, Walters WP, Plowright AT, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19(5):353-364. doi:10.1038/s41573-019-0050-3
Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70-76. doi:10.1097/SLA.0000000000002693
Wartman SA, Combs CD. Medical education must move from the information age to the age of artificial intelligence. Acad Med. 2018;93(8):1107-1109. doi:10.1097/ACM.0000000000002044
Chan KS, Zary N. Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR Med Educ. 2019;5(1):e13930. doi:10.2196/13930
Masters K. Artificial intelligence in medical education. Med Teach. 2019;41(9):976-980. doi:10.1080/0142159X.2019.1595557
van Kooten MJ, Tan CO, Hofmeijer EIS, et al. A framework to integrate artificial intelligence training into radiology residency programs: preparing the future radiologist. Insights Imaging. 2024;15(1):15. doi:10.1186/s13244-023-01595-3
Hu R, Rizwan A, Hu Z, Li T, Chung AD, Kwan BYM. An artificial intelligence training workshop for diagnostic radiology residents. Radiol Artif Intell. 2023;5(2):e220170. doi:10.1148/ryai.220170
Ghanem M, Ghaith AK, Bydon M. Artificial intelligence and personalized medicine: transforming patient care. doi:10.1016/B978-0-443-13963-5.00012-1
Desseauve D, Lescar R, de la Fourniere B, Ceccaldi PF, Dziadzko M. AI in obstetrics: evaluating residents' capabilities and interaction strategies with ChatGPT. Eur J Obstet Gynecol Reprod Biol. 2024;302:238-241. doi:10.1016/j.ejogrb.2024.09.008
Calisto FM, Santiago C, Nunes N, Nascimento JC. BreastScreening-AI: evaluating medical intelligent agents for human-AI interactions. Artif Intell Med. 2022;127:102285. doi:10.1016/j.artmed.2022.102285
Shiang T, Garwood E, Debenedectis CM. Artificial intelligence-based decision support system (AI-DSS) implementation in radiology residency: introducing residents to AI in the clinical setting. Clin Imaging. 2022;92:32-37. doi:10.1016/j.clinimag.2022.09.003
Xu Y, Jiang Z, Ting DSW, et al. Medical education and physician training in the era of artificial intelligence. Singapore Med J. 2024;65(3):159-166. doi:10.4103/singaporemedj.SMJ-2023-203
Hernández-Rodríguez J, Rodríguez-Conde MJ, Santos-Sánchez JÁ, Cabrero-Fraile FJ. Development and validation of an educational software based in artificial neural networks for training in radiology (JORCAD) through an interactive learning activity. Heliyon. 2023;9(4):e14780. doi:10.1016/j.heliyon.2023.e14780
Silver JK, Dodurgali MR, Gavini N. Artificial intelligence in medical education and mentoring in rehabilitation medicine. Am J Phys Med Rehabil. 2024;103(11):1039-1044. doi:10.1097/PHM.0000000000002604
Stone DL, Lukaszewski KM, Johnson RD. Will artificial intelligence radically change human resource management processes? Organ Dyn. 2024;53(3):101034. doi:10.1016/j.orgdyn.2024.101034
Garber AM, Feldman M, Ryan M, Santen SA, Dow A, Goldberg SR. Core EPAs in the acting internship: early outcomes from an interdepartmental experience. Med Sci Educ. 2021;31(2):527-533. doi:10.1007/s40670-021-01208-y
Bilgic E, Gorgy A, Yang A, et al. Exploring the roles of artificial intelligence in surgical education: a scoping review. Am J Surg. 2022;224(1 Pt A):205-216. doi:10.1016/j.amjsurg.2021.11.023
Sun W, Jiang X, Dong X, Yu G, Feng Z, Shuai L. The evolution of simulation-based medical education research: from traditional to virtual simulations. Heliyon. 2024;10(15):e35627. doi:10.1016/j.heliyon.2024.e35627
Sohail N, Puyana C, Zimmerman L, Tsoukas MM. Artificial intelligence in dermatology: bridging the gap in patient care and education. Clin Dermatol. 2024;42(5):434-436. doi:10.1016/j.clindermatol.2024.06.009
Sachedina D, Hooda R, Fawaz B. Practical applications of artificial intelligence in dermatology residency training. Clin Exp Dermatol. 2024;49(8):925-926. doi:10.1093/ced/llae096
Hansen V, Jensen J, Kusk MW, Gerke O, Tromborg HB, Lysdahlgaard S. Deep learning performance compared to healthcare experts in detecting wrist fractures from radiographs: a systematic review and meta-analysis. Eur J Radiol. 2024;174:111399. doi:10.1016/j.ejrad.2024.111399
Ramachandran V, Jairath N, Cheraghlou S, Pahalyants V. Revolutionizing dermatology residency: artificial intelligence for knowledge and clinical milestones assessment. Clin Exp Dermatol. 2024;49(7):732-733. doi:10.1093/ced/llad324
Kwon YS, Dohopolski M, Morgan H, et al. Artificial intelligence-empowered radiation oncology residency education. Pract Radiat Oncol. 2023;13(1):8-10. doi:10.1016/j.prro.2022.09.003
Simpson SA, Cook TS. Artificial intelligence and the trainee experience in radiology. J Am Coll Radiol. 2020;17(11):1388-1393. doi:10.1016/j.jacr.2020.09.028
Hui ML, Sacoransky E, Chung A, Kwan BY. Exploring the integration of artificial intelligence in radiology education: a scoping review. Curr Probl Diagn Radiol. 2025;54(3):332-338. doi:10.1067/j.cpradiol.2024.10.012
Akutay S, Yüceler Kaçmaz H, Kahraman H. The effect of artificial intelligence supported case analysis on nursing students' case management performance and satisfaction: a randomized controlled trial. Nurse Educ Pract. 2024;80:104142. doi:10.1016/j.nepr.2024.104142
Fang Z, Xu Z, He X, Han W. Artificial intelligence-based pathologic myopia identification system in
the ophthalmology residency training program. Front Cell Dev Biol. 2022;10:1053079. doi:10.3389/fcell.2022.1053079
Lindqwister AL, Hassanpour S, Lewis PJ, Sin JM. AI-RADS: an artificial intelligence curriculum for residents. Acad Radiol. 2021;28(12):1810-1816. doi:10.1016/j.acra.2020.09.017
Goldenberg MG. Surgical artificial intelligence in urology: educational applications. Urol Clin North Am. 2024;51(1):105-115. doi:10.1016/j.ucl.2023.06.003
Salastekar NV, Maxfield C, Hanna TN, Krupinski EA, Heitkamp D, Grimm LJ. Artificial intelligence/machine
learning education in radiology: multi-institutional survey of radiology residents in the United States. Acad Radiol. 2023;30(7):1481-1487. doi:10.1016/j.acra.2023.01.005
Atalay MK, Baird GL, Stib MT, George P, Oueidat K, Cronan JJ. The impact of emerging technologies on residency selection by medical students in 2017 and 2021, with a focus on diagnostic radiology. Acad Radiol. 2023;30(6):1181-1188. doi:10.1016/j.acra.2022.07.003
Muir RT, Gros P, Ure R, et al. Modification to neurology residency training: the Toronto neurology COVID-19 pandemic experience. Neurol Clin Pract. 2021;11(2):e165-e169. doi:10.1212/CPJ.0000000000000894
Forney MC, McBride AF. Artificial intelligence in radiology residency training. Semin Musculoskelet Radiol. 2020;24(1):74-80. doi:10.1055/s-0039-3400270
Harishbhai Tilala M, Kumar Chenchala P, Choppadandi A, et al. Ethical considerations in the use of artificial intelligence and machine learning in health care: a comprehensive review. Cureus. 2024;16(6):e62443. doi:10.7759/cureus.62443
Franco D'Souza R, Mathew M, Mishra V, Surapaneni KM. Twelve tips for addressing ethical concerns in the implementation of artificial intelligence in medical education. Med Educ Online. 2024;29(1):2330250. doi:10.1080/10872981.2024.2330250
Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: a call for open science. Patterns (N Y). 2021;2(10):100347. doi:10.1016/j.patter.2021.100347
Lin S, Pandit S, Tritsch T, Levy A, Shoja MM. What goes in, must come out: generative artificial intelligence does not present algorithmic bias across race and gender in medical residency specialties. Cureus. 2024;16(2):e54448. doi:10.7759/cureus.54448
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 by the Author(s). Licensee RMJ.

This work is licensed under a Creative Commons Attribution 4.0 International License.






