[2026-01-26] Conventional vs Combination of Conventional and Digital Approaches to Prosthetic Rehabilitation of Orbital Defect: Case Report

Authors

  • Nuntaporn Rojanasakul Dental Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand https://orcid.org/0009-0006-2473-0982

DOI:

https://doi.org/10.33165/rmj.2026.277286

Keywords:

3D printing, Orbital prosthesis, Split mold, Case report

Abstract

Background: Presently, the digital impression and fabrication techniques for maxillofacial prostheses have been introduced. The efficient, easy and accessible one was created, selected, performed and compared with the conventional one.

Case Presentation: Prosthetic reconstructions were performed in a large and unfavorable facial defect, involving left orbital and intimately surrounding structures, with 2 different approaches: conventional approach vs combinational approach. One-month and 6-month follow-up visits were conducted. The results revealed that the combined technique overcame the conventional one in term of patients’ comfort, risk of trauma, laboratory workload, mold accuracy and split mold fabrication, whereas, the inferior appearance of skin texture from the scan powder and the layer lines on the printed mold surface was noticeable.

Conclusions: Digital technique can be utilized to support, replace and even outperform conventional technique in certain steps of maxillofacial prosthesis fabrication which decreases workload and increases patient satisfaction.

References

Ono T, Tanaka N, Umeno H, et al. treatment outcomes of locally advanced squamous cell carcinoma of the ethmoid sinus treated with anterior craniofacial resection or chemoradiotherapy. Case Rep Oncol. 2017;10(1):339-349. doi:10.1159/000470834

Gras-Cabrerizo JR, Montserrat-Gili JR, León-Vintró X, Massegur-Solench H, de Vega JM, Virós-Porcuna D. Treatment results for ethmoid sinus carcinoma. J Laryngol Otol. 2009;123(10):1120-1124. doi:10.1017/S0022215109990752

Ansa B, Goodman M, Ward K, et al. Paranasal sinus squamous cell carcinoma incidence and survival based on Surveillance, Epidemiology, and End Results data, 1973 to 2009. Cancer. 2013;119(14):2602-2610. doi:10.1002/cncr.28108

Thaworanunta S, Shrestha B, Srithavaj T. Prosthetic rehabilitation of orbital defects: a review of 110 cases. M Dent J. 2014;34(3):197-203.

Dodia MA, Patel N, Desai C, et al. Comparative evaluation of conventional and digital techniques for maxillofacial prosthesis fabrication: a systematic review of the literature. Cureus. 2025;17(10):1-15. doi:10.7759/cureus.95691

Cristache CM, Tudor I, Moraru L, Cristache G, Lanza A, Burlibasa M. Digital workflow in maxillofacial prosthodontics - an update on defect data acquisition, editing and design using open-source and commercial available software. Appl Sci. 2021;11(3):973. doi:10.3390/app11030973

Unkovskiy A, Roehler A, Huettig F, et al. Simplifying the digital workflow of facial prostheses manufacturing using a three-dimensional (3D) database: setup, development, and aspects of virtual data validation for reproduction. J Prosthodont Res. 2019;63(3):313-320. doi:10.1016/j.jpor.2019.01.004

Bockey S, Berssenbrügge P, Dirksen D, Wermker K, Klein M, Runte C. Computer-aided design of facial prostheses by means of 3D-data acquisition and following symmetry analysis. J Craniomaxillofac Surg. 2018;46(8):1320-1328. doi:10.1016/j.jcms.2018.05.020

Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303-308. doi:10.1016/j.prosdent.2017.11.007

Eggbeer D, Bibb R, Evans P. Toward identifying specification requirements for digital bone-anchored prosthesis design incorporating substructure fabrication: a pilot study. Int J Prosthodont. 2006;19(3):258-263.

Grant GT, Aita-Holmes C, Liacouras P, Garnes J, Wilson WO Jr. Digital capture, design, and manufacturing of a facial prosthesis: clinical report on a pediatric patient. J Prosthet Dent. 2015;114(1):138-141. doi:10.1016/j.prosdent.2014.04.031

Salazar-Gamarra R, Seelaus R, da Silva JV, da Silva AM, Dib LL. Monoscopic photogrammetry to obtain 3D models by a mobile device: a method for making facial prostheses. J Otolaryngol Head Neck Surg. 2016;45(1):33. doi:10.1186/s40463-016-0145-3

Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303-308. doi:10.1016/j.prosdent.2017.11.007

Tasopoulos T, Chatziemmanouil D, Kouveliotis G, Karaiskou G, Wang J, Zoidis P. PEEK maxillary obturator prosthesis fabrication using intraoral scanning, 3D printing, and CAD/CAM. Int J Prosthodont. 2020;33(3):333-340. doi:10.11607/ijp.6575

Liu H, Bai S, Yu X, Zhao Y. Combined use of a facial scanner and an intraoral scanner to acquire a digital scan for the fabrication of an orbital prosthesis. J Prosthet Dent. 2019;121(3):531-534. doi:10.1016/j.prosdent.2018.05.019

Bohner L, Gamba DD, Hanisch M, et al. Accuracy of digital technologies for the scanning of facial, skeletal, and intraoral tissues: a systematic review. J Prosthet Dent. 2019;121(2):246-251. doi:10.1016/j.prosdent.2018.01.015

Eggbeer D, Bibb R, Evans P, Ji L. Evaluation of direct and indirect additive manufacture of maxillofacial prostheses. Proc Inst Mech Eng H. 2012;226(9):718-728. doi:10.1177/0954411912451826

He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep. 2014;4:6973. doi:10.1038/srep06973

Kesting MR, Koerdt S, Rommel N, et al. Classification of orbital exenteration and reconstruction. J Craniomaxillofac Surg. 2017;45(4):467-473. doi:10.1016/j.jcms.2017.01.003

Hecker DM. Maxillofacial rehabilitation of a large facial defect resulting from an arteriovenous malformation utilizing a two-piece prosthesis. J Prosthet Dent. 2003;89(2):109-113. doi:10.1067/mpr.2003.23

Buzayan MM. Prosthetic management of mid-facial defect with magnet-retained silicone prosthesis. Prosthet Orthot Int. 2014;38(1):62-67. doi:10.1177/0309364613484052

Mantri SS, Mantri SP, Rathod CJ, Bhasin A. Rehabilitation of a mandibular segmental defect with magnet retained maxillofacial prosthesis. Indian J Cancer. 2013;50(1):21-24. doi:10.4103/0019-509X.112282

Ciocca L, Scotti R. Oculo-facial rehabilitation after facial cancer removal: updated CAD/CAM procedures: a pilot study. Prosthet Orthot Int. 2014;38(6):505-509. doi:10.1177/0309364613512368

Şahan MH, Eskiizmir G, Ateş P. Two-piece extraoral prosthetic rehabilitation to a perineural invasion lip cancer. J Prosthodont. 2018;27(3):306-310. doi:10.1111/jopr.12493

Elhelow KM, Al-Thobaiti YE, Gomawi AA. The prosthetic rehabilitation of a patient with a lateral postsurgical defect using a 2-piece magnet-retained facial prosthesis: a clinical report. J Prosthet Dent. 2018;119(5):848-851. doi:10.1016/j.prosdent.2017.05.021

Gorjizad M, Aryannejad M, Shahriari A, et al. Osteoradionecrosis incidence and dental implant survival in irradiated head and neck cancer patients: a systematic review and meta-analysis. Spec Care Dentist. 2025;45(2):e70022. doi:10.1111/scd.70022

Hellman S, Frisch P, Platzman A, Booth P. 3D printing in a hospital: centralized clinical implementation and applications for comprehensive care. Digit Health. 2023;9:20552076231221899. doi:10.1177/20552076231221899

Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health Journal. 2022;6(4):217-226. doi:10.1016/j.glohj.2022.11.001

Peelman N, Ragaert P, Ragaert K, De Meulenaer B, Devlieghere F, Cardon L. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. J Appl Polym Sci. 2015;132(48):1-15. doi:10.1002/app.42305

Winkler S, Meyer KV, Heuer C, Kortmann C, Dehne M, Bahnemann J. Invitro biocompatibility evaluation of a heat-resistant 3D printing material for use in customized cell culture devices. Eng Life Sci. 2022;22(11):699-708. doi:10.1002/elsc.202100104

Dehurtevent M, Robberecht L, Béhin P. Influence of dentist experience with scan spray systems used in direct CAD/CAM impressions. J Prosthet Dent. 2015;113(1):17-21. doi:10.1016/j.prosdent.2014.07.006

Kurbad A. The optical conditioning of Cerec preparations with scan spray. Int J Comput Dent. 2000;3(4):269-279.

Lehmann KM, Azar MS, Kämmerer PW, Wentaschek S, Hell EN, Scheller H. The effect of optical conditioning of preparations with scan spray on preparation form. Acta stomatologica Croatica. 2011;45(2):86-92.

Dubey SG, Balwani TR, Chandak AV, Samidha P. Material in maxillofacial prosthodontics – a review. J Evolution Med Dent Sci. 2020;9(44):3319-3324. doi:10.14260/jemds/2020/729

Downloads

Published

2026-01-26

How to Cite

1.
Rojanasakul N. [2026-01-26] Conventional vs Combination of Conventional and Digital Approaches to Prosthetic Rehabilitation of Orbital Defect: Case Report. Res Med J [internet]. 2026 Jan. 26 [cited 2026 Jan. 30];:e277286. available from: https://he02.tci-thaijo.org/index.php/ramajournal/article/view/277286

Issue

Section

Case Reports