The Future Coming of Neurosurgical Robots

Main Article Content

Sorayouth Chumnanvej


In modern neurosurgery, the limitations to carry out the neurosurgical procedures based on conventional techniques were achieved already by neurosurgeons. The capability of 3 D imagination in neurosurgeons' brain and mind had be trained and practiced with experienced skill from generation to generation. This is very important skill for neurosurgeons to create the trajectory for their approaches under preoperative plan imaging. However technological improvements in image guidance and intraoperative imaging have become impact to the experienced human neurosurgeons. The introduction of robotic assistance in neurosurgery has provided neurosurgeons improving their dexterities, minimal tissue traumatization, ergonomics, better visualization, accuracy, precision and repeatability to perform their procedures. The patient safty is paramount and concerned. The future direction of robotic assistance in neurosurgery will enhance the patient safety by providing accuracy, precision and repeatability in neurosurgical procedures and be the objective means to assess neurosurgeon performance.

Article Details

How to Cite
Chumnanvej, S. (2014). The Future Coming of Neurosurgical Robots. Ramathibodi Medical Journal, 37(1), 48-51. Retrieved from
Special Articles


1. Benabid AL1, Hoffmann D, Lavallee S, Cinquin P, Demongeot J, Le Bas JF, et al. Is there any future for robots in neurosurgery?. Adv Tech Stand Neurosurg. 1991;18:3-45.

2. McBeth PB, Louw DF, Rizun PR, Sutherland GR. Robotics in neurosurgery. Am J Surg. 2004;188:68S-75S. doi:10.1016/j.amjsurg.2004.08.004.

3. Zamorano L, Li Q, Jain S, Kaur G. Robotics in neurosurgery: state of the art and future technological challenges. Int J Med Robot. 2004;1(1):7-22.

4. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H. 2000;214(1):129-40.

5. Benabid AL. A routine stereotactic procedure in 2003. Neurosurgery. 1993;33(4):660-2.

6. Nathoo N, Cavuşoğlu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005;56(3):421-33.

7. Okudera H. Robotic surgery for brain tumors. Nihon Rinsho. 2005;63 Suppl 9:358-62.

8. Holly LT. Neurosurgical robotics. Int J Med Robot. 2006;2(2):105-6.

9. Tavakoli M, Aziminejad A, Patel RV, Moallem M. Tool/tissue interaction feedback modalities in robot-assisted lump localization. 2006 International Conf Proc IEEE Eng Med Biol Soc. 2006;1:3854-7. doi:10.1109/IEMBS.2006.260672.

10. Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg. 1995;1(4):242-8.

11. Chinzei K, Miller K. Towards MRI guided surgical manipulator. Med Sci Monit. 2001;7(1):153-63.

12. Louw DF, Fielding T, McBeth PB, Gregoris D, Newhook P, Sutherland GR. Surgical robotics: a review and neurosurgical prototype development. Neurosurgery. 2004;54(3):525-36.

13. Sawaya R, Rambo WM Jr, Hammoud MA, Ligon BL. Advances in surgery for brain tumors. Neurol Clin. 1995;13(4):757-71.

14. Le Roux PD, Das H, Esquenazi S, Kelly PJ. Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery. 2001;48(3):584-9.

15. Hongo K1, Kobayashi S, Kakizawa Y, Koyama J, Goto T, Okudera H, et al. NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery. 2002;51(4):985-8.

16. Koyama J, Hongo K, Kakizawa Y, Goto T, Kobayashi S. Endoscopic telerobotics for neurosurgery: preliminary study for optimal distance between an object lens and a target. Neurol Res. 2002;24(4):373-6.

17. Wolf A, Shoham M, Michael S, Moshe R. Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments. Spine (Phila Pa 1976). 2004;29(2):220-8.

18. Bertelsen A, Melo J, Sánchez E, Borro D. A review of surgical robots for spinal interventions. Int J Med Robot. 2013;9(4):407-22. doi: 10.1002/rcs.1469.

19. Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496-501. doi:10.1097/BRS.0b013e31824b7767.

20. Bell KM, Hartman RA, Gilbertson LG, Kang JD. In vitro spine testing using a robot-based testing system: comparison of displacement control and “hybrid control.” J Biomech. 2013;46(10):1663-9. doi:10.1016/j.jbiomech.2013.04.007.

21. Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22(3):661-6. doi:10.1007/s00586-012-2499-1.

22. Marcus HJ, Cundy TP, Nandi D, Yang GZ, Darzi A. Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J. 2014;23(2):291-7. doi:10.1007/s00586-013-2879-1.

23. Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72 Suppl 1:12-8. doi:10.1227/NEU.0b013e318270d02c.

24. Spetzger U, Schilling AV, Winkler G, Wahrburg J, König A. The past, present and future of minimally invasive spine surgery: A review and speculative outlook. Minim Invasive Ther Allied Technol. 2013;22:227-41.

Most read articles by the same author(s)