Sarcopenia in chronic hepatitis C infection
DOI:
https://doi.org/10.14456/taj.2025.5Keywords:
hepatitis C virus, skeletal muscle, sarcopenia, insulin resistanceAbstract
This article aims to review the risk of sarcopenia in chronic hepatitis C infection, its molecular mechanisms, and health promotion strategies for primary prevention. Reports indicate that approximately 21.9%–22.4% of patients with chronic hepatitis C have sarcopenia (muscle mass loss). A 27-year cohort study revealed that patients with chronic hepatitis C have a 0.95–2.23 times higher risk of muscle degeneration and an all-cause cumulative mortality rate of up to 35.2%. This underscores that, without treatment, individuals with chronic hepatitis C are at significant risk of muscle mass loss due to the liver's crucial role in muscle fiber synthesis. Prolonged muscle mass loss occurs due to molecular changes, including inclusion body myositis (IBM), and insulin resistance. The core protein and NS5A protein of the hepatitis C virus (HCV) stimulate the release of inflammatory cytokines while suppressing cytokine signaling proteins. This leads to insulin resistance, reducing glucose uptake by muscle cells, altering metabolism, and resulting in sarcopenia driven by virus-host-environment interactions. In addition to consuming adequate protein and essential nutrients, engaging in resistance and aerobic exercises, and potentially using certain medications to maintain muscle health, early risk assessment is an effective strategy for delaying muscle degeneration in patients with chronic hepatitis C.
Downloads
References
World Health Organization. Hepatitis C [Internet]. 2024 [updated 2024 Apr 9; cited 2024 Dec 4]. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c
Patel HP, Clift E, Lewis L, Cooper C. Epidemiology of sarcopenia and frailty. frailty and sarcopenia - onset, development and clinical challenges [Internet]. 2017 [cited 2024 Jul 23]. Available from: http://dx.doi.org/10.5772/intechopen.69771
Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab [Internet]. 2013 [cited 2024 Jul 23];20(1):1–10. Available from: https://synapse.koreamed.org/articles/1090254
Van Dongen C, Paik JM, Harring M, Younossi Y, Price JK, Kabbara K, et al. Sarcopenia, healthy living, and mortality in patients with chronic liver diseases. Hepatol Commun [Internet]. 2022 [cited 2024 Nov 26];6(11):3140–53. Available from: https://doi.org/10.1002/hep4.2061
Bering T, Diniz KGD, Coelho MPP, Vieira DA, Soares MMS, Kakehasi AM, et al. Association between pre-sarcopenia, sarcopenia, and bone mineral density in patients with chronic hepatitis C. J Cachexia Sarcopenia Muscle [Internet]. 2018 [cited 2024 Nov 27];9(2):255-68. Available from: https://doi.org/10.1002/jcsm.12269
Owen OE, Reichard GA Jr, Boden G, Patel MS, Trapp VE. Interrelationships among key tissues in the utilization of metabolic substrates. In: Katzen HM, Mahler RJ, editors. Diabetes, obesity and vascular disease: metabolic and molecular interrelationships, part 2. Advances in modern nutrition. Vol. 2. New York: John Wiley and Sons; 1978. p. 517-50.
MacIntosh BR, Gardiner PF, McComas AJ. Skeletal muscle: form and function. 2nd ed. Champaign, IL: Human Kinetics; 2006.
Li M, Larsson L. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments. J Physiol [Internet]. 2010 [cited 2018 Sep 18];588(Pt 24):5105–14. Available from: https://doi.org/10.1113/jphysiol.2010.199067
Cobley JN, Ab Malik Z, Morton JP, Close GL, Edwards BJ, Burniston JG. Age- and activity-related differences in the abundance of myosin essential and regulatory light chains in human muscle. Proteomes [Internet]. 2016 [cited 2016 Jun 20];4(2):15. Available from: http://www.mdpi.com/2227-7382/4/2/15
Meyer F, Bannert K, Wiese M, Esau S, Sautter LF, Ehlers L, et al. Molecular mechanism contributing to malnutrition and sarcopenia in patients with liver cirrhosis. Int J Mol Sci [Internet]. 2020 [cited 2024 Jul 24];21(15):5357. Available from: https://doi.org/10.3390/ijms21155357
De Bandt JP, Jegatheesan P, Tennoune-El-Hafaia N. Muscle loss in chronic liver diseases: the example of nonalcoholic liver disease. Nutrients [Internet]. 2018 [cited 2024 Jul 24];10(9);1195. Available from: https://doi.org/10.3390/nu10091195
Guarino M, Cossiga V, Becchetti C, Invernizzi F, Lapenna L, Lavezzo B, et al. Sarcopenia in chronic advanced liver diseases: a sex-oriented analysis of the literature. Dig Liver Dis [Internet]. 2022 [cited 2024 Jun 14];54(8):997-1006. Available from: https://doi.org/10.1016/j.dld.2021.10.010
Bunchorntavakul C, Reddy KR. Review article: malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment Pharmacol Ther [Internet]. 2020 [cited 2024 Jun 14];51(1):64-77. Available from: https://doi.org/10.1111/apt.15571
Mangia A, Ripoli M. Insulin resistance, steatosis and hepatitis C virus. Hepatol Int [Internet]. 2013 [cited 2024 Jul 24];7(2):S782-9. Available from: https://doi.org/10.1007/s12072-013-9460-1
Abdul-Ghani MA, Defronzo RA. Pathogenesis of insulin resistance in skeletal muscle. Biomed Res Int [Internet]. 2010 [cited 2024 Jul 24];2010(1):476279. Available from: https://doi.org/10.1155/2010/476279
Parvaiz F, Manzoor S, Tariq H, Javed F, Fatima K, Qadri I. Hepatitis C virus infection: molecular pathways to insulin resistance. Virol J [Internet]. 2011 [cited 2024 Jul 23];8(1):1-6. Available from: https://doi.org/10.1186/1743-422X-8-474
Serfaty L, Capeau J. Hepatitis C, insulin resistance and diabetes: clinical and pathogenic data. Liver Int [Internet]. 2009 [cited 2024 Jul 23];29(Suppl 2):13-25. Available from: https://doi.org/10.1111/j.1478-3231.2008.01952.x
Safi SZ, Shah H, Siok Yan GO, Qvist R. Insulin resistance provides the connection between hepatitis C virus and diabetes. Hepatitis Monthly [Internet]. 2015 [cited 2024 Jul 23];15(1):23941. Available from: https://doi.org/10.5812/hepatmon.23941
Clement S, Pascarella S, Negro F. Hepatitis C virus infection: molecular pathways to steatosis, insulin resistance and oxidative stress. Viruses [Internet]. 2009 [cited 2024 Jul 23];1(2):126-43. Available from: https://doi.org/10.3390/v1020126
Gonzalez-Reimers E, Lopez-Prieto J, Quintero-Platt G, Pelazas-Gonzalez R, Aleman-Valls MR, Perez-Hernandez O, et al. Adipokines, cytokines and body fat stores in hepatitis C virus liver steatosis. World J Hepatol [Internet]. 2016 [cited 2024 Jul 24];8(1):74-82. Available from: https://doi.org/10.4254/wjh.v8.i1.74
Schank M, Zhao J, Wang L, Nguyen LNT, Cao D, Dang X, et al. Oxidative stress induces mitochondrial compromise in CD4 T cells from chronically HCV-infected individuals. Front Immunol [Internet]. 2021 [cited 2024 Jul 24];12:760707. Available from: https://doi.org/10.3389/fimmu.2021.760707
Ito H, Ito H, Nagano M, Nakano S, Shigeyoshi Y, Kusaka H. In situ identification of hepatitis C virus RNA in muscle. Neurology [Internet]. 2005 [cited 2024 Jun 14];64(6):1073-5. Available from: https://doi.org/10.1212/01.WNL.0000154605.02737.FE
Guo S, Feng Y, Zhu X, Zhang X, Wang H, Wang R, et al. Metabolic crosstalk between skeletal muscle cells and liver through IRF4-FSTL1 in nonalcoholic steatohepatitis. Nature Communications [Internet]. 2023 [cited 2024 Jun 4];14(1):6047. Available from: https://doi.org/10.1038/s41467-023-41832-3
Di Muzio A, Bonetti B, Capasso M, Panzeri L, Pizzigallo E, Rizzuto N, et al. Hepatitis C virus infection and myositis: A virus localization study. Neuromuscular Disorders [Internet]. 2003 [cited 2024 Jun 14];13(1):68-71. Available from: https://doi.org/10.1016/s0960-8966(02)00184-0
Alexander JA, Huebner CJ. Hepatitis C and inclusion body myositis. American Journal of Gastroenterology [Internet]. 1996 [cited 2024 Jun 14]; 91(9):1845-7. Available from: https://pubmed.ncbi.nlm.nih.gov/8792712/
Tsuruta Y, Yamada T, Yoshimura T, Satake M, Ogata K, Yamamoto T, et al. Inclusion body myositis associated with hepatitis C virus infection. Fukuoka Igaku Zasshi [Internet]. 2001 [cited 2024 Jun 14];92(11):370-6. Available from: https://pubmed.ncbi.nlm.nih.gov/11774706/
Coelho MPP, de Castro PASV, de Vries TP, Colosimo EA, Bezerra JMT, Rocha GA, et al. Sarcopenia in chronic viral hepatitis: from concept to clinical relevance. World J Hepatol [Internet]. 2023 [cited 2024 Jun 14];15(5):649-65. Available from: https://doi.org/10.4254/wjh.v15.i5.649
Bay ML, Pedersen BK. Muscle-organ crosstalk: focus on immunometabolism. Front Physiol [Internet]. 2020 [cited 2024 Jul 23];11:567881. Available from: https://doi.org/10.3389/fphys.2020.567881
Mahgoub MO, D’Souza C, Al Darmaki RSMH, Baniyas MMYH, Adeghate E. An update on the role of irisin in the regulation of endocrine and metabolic functions. Peptides. 2018;104:15-23.
So B, Kim HJ, Kim J, Song W. Exercise-induced myokines in health and metabolic diseases. Integr Med Res. 2014;3(4):172-9.
Zhao R. Irisin at the crossroads of inter-organ communications: Challenge and implications. Front Endocrinol. 2022;13:989135.
Manole E, Ceafalan LC, Popescu BO, Dumitru C, Bastian AE. Myokines as possible therapeutic targets in cancer cachexia. J Immunol Res [Internet]. 2018 [cited 2024 Jul 23];2018(1):8260742. Available from: https://doi.org/10.1155/2018/8260742
Severinsen MCK, Pedersen BK. Muscle–organ crosstalk: the emerging roles of myokines. Endocr Rev [Internet]. 2020 [cited 2024 Jul 23];41(4):594–609. Available from: https://dx.doi.org/10.1210/endrev/bnaa016
Charatcharoenwitthaya P, Karaketklang K, Aekplakorn W. Muscle strength, but not body mass index, is associated with mortality in patients with non-alcoholic fatty liver disease. J Cachexia Sarcopenia Muscle [Internet]. 2022 [cited 2024 Nov 27];13(5):2393-2404. Available from: https://doi.org/10.1002/jcsm.13001
Visvanathan R, Yu S. Sarcopenia: sarcopenia management for clinicians. In: Morley JE, Arai H, Walters D, editors. Frailty: a multidimensional approach [Internet]. Hoboken: Wiley; 2021 [cited 2024 Jul 24]. p. 433–9. Available from: https://doi.org/10.1002/9781119597896.ch28
Wang P yu, Li Y, Wang Q. Sarcopenia: an underlying treatment target during the COVID-19 pandemic. Nutrition. 2021;84:111104.
Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience [Internet]. 2020 [cited 2024 Jul 24];42(6):1547-78. Available from: https://doi.org/10.1007/s11357-020-00272-3
Ebadi M, Bhanji RA, Mazurak VC, Montano-Loza AJ. Sarcopenia in cirrhosis: from pathogenesis to interventions. J Gastroenterol [Internet]. 2019 [cited 2024 Jul 23];54:845-59. Available from: https://doi.org/10.1007/s00535-019-01605-6
Rong S, Wang L, Peng Z, Liao Y, Li D, Yang X, et al. The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future. J Cachexia Sarcopenia Muscle [Internet]. 2020 [cited 2024 Jul 24];11(2):348-65. Available from: https://doi.org/10.1002/jcsm.12536
Dhaliwal A, Armstrong MJ. Sarcopenia in cirrhosis: a practical overview. Clinical Medicine. 2020;20(5):489-92.
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc [Internet]. 2014 [cited 2024 Nov 27];15(2):95-101. Available from: https://doi.org/10.1016/j.jamda.2013.11.025
Woo J, Leung J, Morley JE. Validating the SARC-F: a suitable community screening tool for sarcopenia. J Am Med Dir Assoc [Internet]. 2014 [cited 2024 Nov 27];15(9):630-4. Available from: https://doi.org/10.1016/j.jamda.2014.04.021