ความปลอดภัยอาหารด้านชีวภาพในการนำน้ำเสียมาใช้ประโยชน์ทางเกษตรกรรม

Main Article Content

ประเสริฐ มากแก้ว

บทคัดย่อ

Biological Food Safety from the Use of Wastewater in Agriculture


ประชากรโลกกำลังประสบปัญหาวิกฤตภัยแล้ง การนำน้ำเสีย/ น้ำทิ้งมาใช้ในการเกษตรจึงเป็นทางเลือกที่น่าสนใจสำหรับการบริหารจัดการทรัพยากรน้ำ แต่อาจก่อให้เกิดความเสี่ยงทั้งด้านความปลอดภัยอาหารทางชีวภาพและสุขภาพมนุษย์  มีปัจจัยหลายอย่างที่เกี่ยวข้องกับความปลอดภัยอาหารด้านชีวภาพจากการนำน้ำเสียมาใช้ในการเกษตร ได้แก่ คุณภาพด้านชีวภาพของน้ำที่ใช้  ระบบการให้น้ำพืช  ชนิดและรูปร่างพืช  ความสามารถในการคงอยู่ของจุลินทรีย์  และความสามารถในการนำเข้ามาภายในเซลล์พืชของจุลินทรีย์  ความเสี่ยงต่อสุขภาพมนุษย์ที่สำคัญ ได้แก่ ความเสี่ยงจากการติดเชื้อทางเดินอาหารเนื่องจากการรับประทานพืชที่ปนเปื้อนจุลินทรีย์ก่อโรคโดยไม่ผ่านการปรุงสุก  และยังอาจก่อให้เกิดความเสี่ยงสุขภาพต่อเกษตรกรและชุมชนใกล้เคียงกับพื้นที่ที่ใช้น้ำเสียในการเพาะปลูกอีกด้วย   ในหลายประเทศได้มีการควบคุมป้องกันปัญหานี้โดยการกำหนดค่ามาตรฐานของคุณภาพน้ำทางด้านชีวภาพเพื่อปกป้องสุขภาพของประชาชน สำหรับประเทศไทยนั้นการดำเนินงานในเรื่องนี้ยังมีจำกัด แต่จะจำเป็นมากขึ้นในอนาคตเพราะภัยแล้ง ดังนั้นหน่วยงานที่เกี่ยวข้องจึงต้องร่วมมือกันในการดำเนินงานโดยให้มีการจัดการน้ำเสียชุมชนอย่างมีประสิทธิภาพ สามารถเอื้อประโยชน์ให้กับภาคเกษตรกรรม ในขณะเดียวกันก็ต้องคำนึงถึงคุณภาพทางด้านชีวภาพของผลิตผลทางการเกษตรและผลกระทบต่อสุขภาพมนุษย์ด้วย


World population is experiencing water shortage crisis; therefore, the use of
wastewater / treated wastewater for agriculture is an interesting alternative for
water resource management. However, it may pose risks in terms of biological food
safety, and human health. There are many factors that contribute to the biological
food safety from the application of wastewater for agriculture; the biological quality
of the wastewater used, types of irrigation systems, types and morphology of plants,
the persistence of microorganisms, and the internalization of microorganisms into the
plant cells. The major human health risks are the risk of gastrointestinal infections
due to eating uncooked pathogen contaminated crops. It may also pose a health risk
to the farmers, and the vicinity communities where wastewater is used. In many
countries, prevention of such problems has been prevented by establishing microbial
water quality standards for wastewater used in agriculture to protect human health.
In Thailand, the application is still limited, but it may be necessary for the future
when Thailand more suffers from the drought. To prevent the potential upcoming
problems, therefore, the concerned agencies must cooperate in the implementation
of effective domestic wastewater management which could be also beneficial to the
agricultural sector. Moreover, the biological quality of agricultural products and
human health risks must be considered.


 

Article Details

บท
บทความพิเศษ (Special Articles)

References

1. UN-Water. The United Nations World Development Report 2015: Water for a sustainable world. Paris: UNESCO; 2015.
2. Sato T, Qadir M, Yamamoto S, Endo T, Zahoor A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric Water Manag. 2013;130:1-13.
3. World Resources Institute. Ranking the World’s Most Water-Stressed Countries in 2040. Available from:https://www.wri.org/blog/2015/08/ranking-world-s-most-water-stressed-countries-2040. (05/04/2019)
4. Jiménez B, Asano T. Water reclamation and reuse around the world. In: Jiménez B, Asano T, editors. Water reuse: an international survey of current practice, issues and needs. London: IWA Publishing; 2008.
5. Asano T, Burton F, Leverenz H, Tsuchihashi R, Tchobanoglous G. Water reuse: Issues, technologies, and applications. New York: McGraw Hill; 2007.
6. Toze S. Reuse of effluent water—benefits and risks. Agric Water Manag. 2006;80(1):147-59.
7. Adrover M, Farrús E, Moyà G, Vadell J. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J Environ Manage. 2012;95:188-92.
8. WHO. WHO guidelines for the safe use of wastewater, excreta and grey water (Volume II: Wastewater use in agriculture): World Health Organization; 2006.
9. Haas CN, Rose JB, Gerba CP. Quantitative microbial risk assessment. Toronto: John Wiley & Sons; 1999.
10. Al-Lahham O, El Assi N, Fayyad M. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit. Agric Water Manag. 2003;61(1):51-62.
11. Solomon EB, Pang HJ, Matthews KR. Persistence of Escherichia coli O157:H7 on Lettuce Plants following Spray Irrigation with Contaminated Water. J Food Prot. 2003;66(12):2198-202.
12. Erickson MC, Webb CC, Diaz-Perez JC, Phatak SC, Silvoy JJ, Davey L, et al. Surface and internalized Escherichia coli O157: H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water. J Food Prot. 2010;73(6):1023-9.
13. Nikaido M, Tonani KA, Julião FC, Trevilato TM, Takayanagui AM, Sanches SM, et al. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant. Biological trace element research. 2010;134(3):342-51.
14. Armon R, Gold D, Brodsky M, Oron G. Surface and subsurface irrigation with effluents of different qualities and presence of Cryptosporidium oocysts in soil and on crops. Wat Sci Tech. 2002;46(3):115-22.
15. Fonseca JM, Fallon SD, Sanchez CA, Nolte KD. Escherichia coli survival in lettuce fields following its introduction through different irrigation systems. J Appl Microbiol. 2011;110(4):893-902.
16. Makkaew P, Miller M, Fallowfield HJ, Cromar NJ. Microbial risk in wastewater irrigated lettuce: Comparing Escherichia coli contamination from an experimental site with a laboratory approach. Wat Sci Tech. 2016;74(3):749-55.
17. Alum A, Enriquez C, Gerba CP. Impact of drip irrigation method, soil, and virus type on tomato and cucumber contamination. Food Environ Virol. 2011;3(2):78-85.
18. Ait Melloul A, Hassani L, Rafouk L. Salmonella contamination of vegetables irrigated with untreated wastewater. World J Microbiol Biotechnol. 2001;17(2):207-9.
19. Song I, Stine SW, Choi CY, Gerba CP. Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation. J Environ Eng. 2006;132(10):1243-8.
20. Makkaew P, Miller M, Cromar N, Fallowfield H. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce. J Water Health. 2017;15(2):228-38.
21. Islam M, Doyle MP, Phatak SC, Millner P, Jiang X. Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. J Food Prot. 2004;67(7):1365-70.
22. Islam M, Doyle MP, Phatak SC, Millner P, Jiang X. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiol. 2005;22(1):63-70.
23. Solomon EB, Potenski CJ, Matthews KR. Effect of irrigation method on transmission to and persistence of Escherichia coli O157:H7 on lettuce. J Food Prot. 2002;65(4):673-6.
24. Wood J, Bezanson G, Gordon R, Jamieson R. Population dynamics of Escherichia coli inoculated by irrigation into the phyllosphere of spinach grown under commercial production conditions. Int J Food Microbiol. 2010;143(3):198-204.
25. Oliveira M, Viñas I, Usall J, Anguera M, Abadias M. Presence and survival of Escherichia coli O157: H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int J Food Microbiol. 2012;156(2):133-40.
26. Kisluk G, Yaron S. Presence and persistence of Salmonella enterica serotype Typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley. Appl Environ Microbiol. 2012;78(11):4030-6.
27. Islam M, Morgan J, Doyle MP, Phatak SC, Millner P, Jiang X. Fate of Salmonella enterica Serovar Typhimurium on Carrots and Radishes Grown in Fields Treated with Contaminated Manure Composts or Irrigation Water. Appl Environ Microbiol. 2004;70(4):2497-502.
28. Islam M, Morgan J, Doyle MP, Phatak SC, Millner P, Jiang X. Persistence of Salmonella enterica serovar typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathog Dis. 2004;1(1):27-35.
29. Uyttendaele M, Jaykus LA, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, et al. Microbial Hazards in Irrigation Water: Standards, Norms, and Testing to Manage Use of Water in Fresh Produce Primary Production. Compr Rev Food Sci Food Saf. 2015;14(4):336-56.
30. Erickson MC. Internalization of fresh produce by foodborne pathogens. Annual review of food science and technology. 2012;3:283-310.
31. Deering AJ, Mauer LJ, Pruitt RE. Internalization of E. coli O157: H7 and Salmonella spp. in plants: a review. Food Res Int. 2012;45(2):567-75.
32. Urbanucci A, Myrmel M, Berg I, von Bonsdorff CH, Maunula L. Potential internalisation of caliciviruses in lettuce. Int J Food Microbiol. 2009;135(2):175-8.
33. Carducci A, Ciurli A, Verani M, editors. Deep viral contamination of lettuce through root absorbtion. the 16th International symposium on health-related water microbiology; 2011; Rotorua, Newzealand.
34. Pachepsky Y, Shelton DR, McLain JE, Patel J, Mandrell RE. Irrigation Waters as a Source of Pathogenic Microorganisms in Produce: A Review. Adv Agron. 2011;113:73.
35. Scheierling SM, Bartone C, Mara DD, Drechsel P. Improving wastewater use in agriculture: An emerging priority. Available from: https://openknowledge.worldbank.org/bitstream/handle/10986/3897/WPS5412.pdf?sequence=1. (15/05/2012)
36. Shuval HI, Yekutiel P, Fattal B. Epidemiological evidence for helminth and cholera transmission by vegetables irrigated with wastewater: Jerusalem - A case study. Wat Sci Tech. 1984;17(4-5):433-42.
37. Blumenthal UJ, Cifuentes E, Bennett S, Quigley M, Ruiz-Palacios G. The risk of enteric infections associated with wastewater reuse: The effect of season and degree of storage of wastewater. Trans R Soc Trop Med Hyg. 2001;95(2):131-7.
38. Gumbo JR, Malaka EM, Odiyo JO, Nare L. The health implications of wastewater reuse in vegetable irrigation: A case study from Malamulele, South Africa. Int J Environ Health Res. 2010;20(3):201-11.
39. Habbari K, Tifnouti A, Bitton G, Mandil A. Geohelminthic infections associated with raw wastewater reuse for agricultural purposes in Beni-Mellal, Morocco. Parasitol Int. 2000;48(3):249-54.
40. Shuval HI. Investigation of typhoid fever and cholera transmission by raw wastewater irrigation in Santiago, Chile. Wat Sci Tech. 1993;27(3-4):167-74.
41. Porter B, Schinder E, Nagar H, Gilad Y, Torek V. An outbreak of shigellosis in an ultra-orthodox Jewish community. Soc Sci Med. 1984;18(12):1061-2.
42. Melloul AA, Hassani L. Salmonella infection in children from the wastewater- spreading zone of Marrakesh city (Morocco). J Appl Microbiol. 1999;87(4):536-9.
43. Trang DT, Hien BTT, Mølbak K, Cam PD, Dalsgaard A. Epidemiology and aetiology of diarrhoeal diseases in adults engaged in wastewater-fed agriculture and aquaculture in Hanoi, Vietnam. Trop Med Int Health. 2007;12(2):23-33.
44. Margalith M, Morag A, Fattal B. Antibodies to polioviruses in an Israeli population and overseas volunteers. J Med Virol. 1990;30(1):68-72.
45. Ensink JHJ, van der Hoek W, Amerasinghe FP. Giardia duodenalis infection and wastewater irrigation in Pakistan. Trans R Soc Trop Med Hyg. 2006;100(6):538-42.
46. El Kettani S, Azzouzi E, Boukachabine K, El Yamani M, Maata A, Rajaoui M. Intestinal parasitosis and use of untreated wastewater for agriculture in Settat, Morocco. 2008.
47. Srikanth R, Naik D. Prevalence of Giardiasis due to wastewater reuse for agriculture in the suburbs of Asmara City, Eritrea. Int J Environ Health Res. 2004;14(1):43-52.
48. Pham-Duc P, Nguyen-Viet H, Hattendorf J, Zinsstag J, Phung-Dac C, Zurbruegg C, et al. Ascaris lumbricoides and Trichuris trichiura infections associated with wastewater and human excreta use in agriculture in Vietnam. Parasitol Int. 2013;62(2):172-80.
49. Cifuentes E, Gomez M, Blumenthal U, Tellez-Rojo MM, Romieu I, Ruiz-Palacios G, et al. Risk factors for Giardia intestinalis infection in agricultural villages practicing wastewater irrigation in Mexico. Am J Trop Med Hyg. 2000;62(3):388-92.
50. Shuval HI, Fattal B, Yekutiel P. State of the art review: An epidemiological approach to the health effects of wastewater reuse. Wat Sci Tech. 1986;18(9):147-62.
51. Hien BTT, Do TT, Scheutz F, Phung DC, Mølbak K, Dalsgaard A. Diarrhoeagenic Escherichia coli and other causes of childhood diarrhoea: A case-control study in children living in a wastewater-use area in Hanoi, Vietnam. J Med Microbiol. 2007;56(8):1086-96.
52. Anh VT, van der Hoek W, Ersbøll AK, Vicheth C, Cam PD, Dalsgaard A. Peri-urban aquatic plant culture and skin disease in Phnom Penh, Cambodia. J Water Health. 2009;7:302–11.
53. Anh VT, van der Hoek W, Ersbøll AK, Thuong NV, Tuan ND, Cam PD. Dermatitis among farmers engaged in peri-urban aquatic food production in Hanoi, Vietnam. Trop Med Int Health. 2007;12:59–65.
54. Linnemann Jr CC, Jaffa R, Gartside PS, Scarpino PV, Clark CS. Risk of infection associated with a wastewater spray irrigation system used for farming. J Occup Med. 1984;26(1):41-4.
55. Fattal B, Bercovier H, Derai-Cochin M, Shuval HI. Wastewater reuse and exposure to Legionella organisms. Water Res. 1985;19(6):693-6.
56. Shuval HI, Wax Y, Yekutiel P, Fattal B. Transmission of enteric disease associated with wastewater irrigation: A prospective epidemiological study. Am J Public Health. 1989;79(7):850-2.
57. Navarro I, Chavez A, Barrios J, Maya C, Becerril E, Lucario S, et al. Wastewater Reuse for Irrigation—Practices, Safe Reuse and Perspectives. 2015.
58. Becerra-Castro C, Lopes AR, Vaz-Moreira I, Silva EF, Manaia CM, Nunes OC. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ Int. 2015;75:117-35.
59. Ilic, S., Drechsel, P., Amoah, P., & LeJeune, J. T. (2010). Applying the multiple-barrier approach for microbial risk reduction in the post-harvest sector of wastewater-irrigated vegetables. In P. Dreschsel, C. A. Scott, L. Raschid-Sally, M. Redwood, & A. Bahri (Eds.), Wastewater Irrigation and Health: Assessing and Mitigation Risk in Low-Income Countries (pp. 239). London: Earthscan.
60. Australian Government Bureau of Meteorology. Annual climate statement. Available from: https://www.bom.gov.au/climate/current/annual/aus/. (29/October/2018)
61. กรมอุตุนิยมวิทยา. แผนภูมิข้อมูลภูมิอากาศ. เข้าถึงได้จาก: https://www.tmd.go.th/en/climate.php?FileID=7. (29 ตุลาคม 2561)
62. สุจริต คูณธนกุลวงศ์, ทวนทัน กิจไพศาลสกุล, ปิยธิดา เรืองรัศมี, พงษ์ศักดิ์ สุทธินนท์, สุภัทรา วิเศษศร, ดาว สุวรรณแสง จั่นเจริญ. รายงานการวิเคราะห์สถานการณ์น้ำของประเทศไทย: ทรัพยากรน้ำกับการพัฒนาเศรษฐกิจ. คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย; 2559.
63. Pariyada Chokewinyoo and Pornsiri Khanayai. Wastewater Production, Treatment, and Use in Thailand. Available from: https://www.ais.unwater.org/ais/pluginfile.php/501/mod_page/content/87/report_thailand.pdf. (29/October/ 2018)