Effect of Andrographolide on Pancreatic Beta Cell Survival in High Glucose Condition
Main Article Content
Abstract
Objective: The aim of this study is to investigate the concentration and duration of andrographolide exposure that is harmless to pancreatic beta cells (INS-1) and the optimum andrographolide concentration that can protect these cells from glucotoxicity.
Materials and Methods: Cell viability in response to andrographolide was evaluated using MTT assay and compared against controls under the following conditions: 1) Exposure to 0.1-100 μmol/L andrographolide for 1-5 days in normal glucose (11 mmol/L glucose) and 2) in high glucose (40 mmol/L glucose), exposure to 0.1-10 μmol/L andrographolide for 3-5 days.
Results: In normal glucose condition, the mean percentage viability of INS-1 cells in 0.1-10 μmol/L andrographolide for 1-5 days was not statistically different from the control. In high glucose condition the tested andrographolide concentrations and duration of exposure could not reduce cell death from glucotoxicity.
Conclusion: The optimal andrographolide concentration and duration of exposure in normal glucose condition are up to 10 μmol/L for approximately 5 days, which does not affect pancreatic beta cells viability. However, 0.1-10 μmol/L andrographolide could not enhance cell survival in high glucose condition.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
American Diabetes Association. Diagnosing diabetes and leaning about prediabetes. 2016;21(1):1-6. Available from: https://www.diabetes.org/pem-prediabetes-es.
เทพ หิมะทองคำ และคณะ. ความรู้เรื่องเบาหวานฉบับสมบูรณ์. กรุงเทพฯ: วิทยพัฒน์; 2550.
Porte D Jr: Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes. 1991;40:166-80.
You S, Zheng J, Chenan Y, Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol. 2022;13:976465.
Marles RJ, Farnswoth NR. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2(2):137-89.
พันธิตร์ มะลิสุวรรณ. สมุนไพรบำบัดโรคเบาหวาน. กรุงเทพฯ: ยูทิไลซ์; 2546
สถาบันวิจัยสมุนไพร กรมวิทยาศาสตร์การแพทย์. มาตรฐานสมุนไพรไทยฟ้าทะลายโจร. กรุงเทพฯ: องค์การสงเคราะห์ทหารผ่านศึก; 2542:42-54.
Hossain MS, Urbi Z, Sule A, Hafizur RKM. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J. 2014;2014:1-28.
Santos-Neto LLD, de Vilhena Toledo MA, Souza PM, de Souza GA. The use of herbal medicine in Alzheimer's disease – a systematic review. Evid Based Complement Alternat Med. 2006;3:441-5.
Akhtar MT, Sarib MSBM, Ismail IS, Abas F, Ismail A, Lajis NH, et al. Anti-diabetic activity and metabolic changes induced by Andrographis paniculata plant extract in obese diabetic rats. Molecules. 2016;21(8):1026.
Zhang Z, Jiang J, Yu P, Zeng X, Larrick JW, Wang Y. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J Transl Med. 2009;7:62.
Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. Glucose Sensitivity and Metabolism-Secretion CouplingStudied during Two-Year Continuous Culture in INS-1E Insulinoma Cells Endocrinology. Endocrinology. 2004;145(2):667-78
Hanchang W, Semprasert N, Thawornchai L,Yenchitsomanus P, Kooptiwut S. Testosterone Protects Against Glucotoxicity-Induced Apoptosis of Pancreatic -Cells (INS-1) and Male Mouse Pancreatic Islets. 2013;154(11):4058–67
Liang Z, Du E, Xu L, Sun Y, Zhang G, Yu P, Wang Y. Synthesis and preliminary biologic activity evaluation of nitric oxide-releasing andrographolide derivatives in RIN-m cells. Chem Pharm Bull. 2014;62(6):519–23.
Mosmann T. Rapid colorimetric for cellular growth and survival: Application to proliferation and cytotoxicity assay. J Immuno Methods. 1983;65:55-63.
นฤพงศ์ ภูนิคม, ภาคภูมิ เขียวละม้าย, ศิริกุล มะโนจันทร์, ชัยรัตน์ ตัณทราวัฒน์พันธ์, ดวงรัตน์ ตันติกัลยาภรณ์. ผลของสารแอนโดรกราโฟไลด์ต่อการอยู่รอดและการแบ่งตัวของเซลล์ต้นกำเนิดมีเซนไคม์ที่แยกจากไขกระดูกของมนุษย์. ธรรมศาสตร์เวชสาร. 2561;18(1):93-103.
Songvut P, Rangkadilok N, Pholphana N, Suriyo T, Panomvana D, Puranajoti P, et al. Comparative pharmacokinetics and safety evaluation of high dosage regimens of Andrographis paniculata aqueous extract after single and multiple oral administration in healthy participants. Front Phamacol. 2023;14:1230401.
Panossian A, Hovhannisyan A, Mamikonyan G, Abrabamian H, Hambardzumyan E, Gabrielian E, et al. Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine. 2000;7(5):351-64.
Wanaratna K, Leethong P, Inchai N, Chueawiang W, Sriraksa P, Tabmee A, et al. Efficacy and safety of Andrographis paniculata extract in patients with mild COVID-19: a randomized controlled trial. Arch Intern Med Res. 2022;5(3):423-7.
Al Batran R, Al-Bayaty F, Mazen M, Al-Obaidi J, Abdulla MA. Acute toxicity and the effect of andrographolide on Porphyromonas gingivalis-induced hyperlipidemia in rats. BioMed Res Int. 2013;2013:594012.
Kijsanayotin P, Chaichantipayuth C. Hepatoprotective effect of Andrographis paniculata and andrographolide against carbontetrachloride. Thai J Pharm Sci. 1992;16(4):301-7.
Yan G, Zhou H, Wang Y, Zhong Y, Tan Z, Wang Y, et al. Protective effects of andrographolide analogue AL-1 on ROS-induced RIN-mb cell death by inducing ROS generation. PLoS One. 2013;8(6):e63656.
Kanokkangsadal P, Mingmalairak C, Mukkasombat N, Kuropakornpong P, Worawattananutai P, Khawcharoenporn T, et al. Andrographis paniculata extract versus placebo in the treatment of COVID-19: a double-blinded randomized control trial. Res Pharm Sci. 2023;18(6):592-603.
Oh JY, Kim YH, LS, Lee YN, Go HS, Hwang DW, et a. The outcomes and quality of pancreatic islet cells isolated from surgical specimens for research on diabetes mellitus. Cell. 2022;11:2335.
Karimova MV, Gvazava IG, Vorotelyak EA. Overcoming the limitations of stem cell-derived beta cells. Biomolecules. 2012;12:810.