Bioelectrical Impedance Analysis

Authors

  • Santi Silairatana Division of Clinical Nutrition, Department of Internal Medicine, Phramongkutklao Hospital and College of Medicine

Keywords:

bioelectrical impedance analysis, body composition, fat mass, fat free mass, phase angle

Abstract

Bioelectrical impedance analysis (BIA) is a body composition assessment method at tissue-system level which analyzes and reports results based on two- or four-compartment model depending on complexity of the system. The basic principles rely on the measurement of the opposition of body cells and tissues to the flow of radio-frequency alternating electrical current. As the current flows through varied materials the voltage associated to electrical current changes which can be measured and calculated for impedance. The components of impedance are then analyzed using regression models to determine different compartments of the body. Recent development regarding BIA system and techniques used such as increasing number of electrodes to measure impedance segmentally and employing multiple electrical frequencies to for measurement
and analysis makes data obtained from newer BIA models more reliable and valid. In addition to regression model-based body composition data, alternative method such as bioelectrical impedance vector analysis (BIVA) and raw impedance data such as impedance ratio and phase angle can also be used to provide additional clinical information. Advantages of BIA for use clinically are being non-invasive, safe, low per-unit cost and quick. However, there are some limitations and technical issues that require consideration when using BIA in clinical practice in order to ensure highest possible validity and reliability.

References

Murphy VP, Kane K. Nutrition Assessment. In: Kane K, Prelack K, Editors. Advance medical nutrition therapy. Burlington, Massachusetts: Jones & Bartlett Learning; 2019. p. 3-44.

Wang ZM, Pierson RN Jr, Heymsfield SB. The five-level model: a new approach to organizing body composition research. Am J Clinl Nutr 1992;56:19-28.

Wang ZM, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr 1997;17:527-58.

Siri WE. Body composition from fluid space and density. In: Brozek J, Hamschel A, Editors. Techniques for measuring body composition. Washington DC: National Academy of Science; 1961. p. 223-44.

Brozek J, Grande F, Anderson JT, Keys A. Densitomytric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci 1963;110:113-40.

Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014;14:10895-10928.

Stahn A, Terblanch E, Ganga H-C. Use of bioelectrical impedance: general principles and overview. In: Preedy VR, editor. Handbook of anthropometry: physical measures of human form in health and disease. New York: Springer Science+Business Media; 2012. p. 49-90.

González-Correa CH. Body composition by bioelectrical impedance analysis. In: Samini F, Bertemes-Filho P, editors. Bioimpedance in biomedical applications and research. Cham: Springer International Publishing AG; 2018. p. 219-41.

Thomasset A. Bio-electrical properties of tissue impedance measurements. Lyon Med 1962; 207:107-18.

Nyboer J. Electrical impedance plethysmograph, second edition. Springfield, Illinois: Thomas Publishers; 1970. 390 p.

Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at bedside: current applications, limitations, and opportunities. Nutr Clin Pract 2015;30(2):180-93.

Chumlea WC, Baumgartner RN, Roche AF. Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectric impedance. Am J Clin Nutr 1988;48(1):7-15.

Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body volume. J Appl Physiol 1969;27:531-4.

Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20-94 years. Nutrition 2001;17:248-53.

Gudivaka R, Schoeller D, Kushner R, Bolt M. Single- and Multifrequency models for bioelectrical impedance analysis for body water compartments. J Appl Physiol 1999;87:1087-96.

Westerterp KR. Body composition. In: Sobotka L, Allison SP, Forbes A, Meier RF, Scheider SM, Soeters PB et al, Editors. Basics in clinical nutrition, fifth edition. Prague: Galén; 2019. pp. 6-12.

Ghosh S, Meister D, Cowen S, Hannan JW, Ferguson A. Body composition at the bedside. Eur J Gastroenterol Hepatol 1997;9(8):783-8.

Deurenberg P, Deurenberg YM, Validation of skinfold thickness and hand-held impedance measurements for estimation of body fat percentage among Singaporean Chinese Malay and Indian subjects. Asia Pacific J Clin Nutr 2002;11:1-7.

Lu HK, Ching LM, Chen YY, Chung CL, Chen KT, Dwyer GB, et al. Hand-to-hand model for bioelectrical impedance analysis to estimate fat free mass in a healthy population. Nutrients 2016;8(10):654.

Nuñez C, Gallagher D, Visser M, Pi-Sunyer FX, Wang Z, Heymsfield SB. Bioimpedance analysis: evaluation of leg-to-leg system based on pressure contact footpad electrodes. Med Sci Sports Exerc 1997;29(4): 524-31.

Wu CS, Chen YY, CHUANG CL, Chiang LM, DWYER GB, Hsu YL, et al. Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy asian individuals, Nutr J 2015;14:52

Ziai S, Coriati A, Chabot K, Mailhot M, Richter MV, Rabasa-Lhoret R. Agreement of bioelectric impedance analysis and dual-energy x-ray absorptiometry for body composition evaluation in adults with cystic fibrosis. J Cyst Fibros 2014;13(5):585-8.

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 2004;23(5):1226-43.

Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance for body composition. Exerc Sport Sci Rev 1990;18:193-224.

Chumlea WC, Baumgartner RN. Bioelectric impedance methods for estimation of body composition. Can J Sport Sci 1990;15(3):172-9.

Scharfetter H, Monif M, Laszlo Z, Lambauer T, Hutter H, Hinghofer- Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int 1997;51(4):1078-87.

Zhu F, Schneditz D, Levin NW. Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduce sensitivity to change in body position. Kidney Int 1999;56(2):692-9.

Ward L, Winall A, Isenring E, Hills A, Czerniec S, Dylke E, et al. Assessment of bilateral limb lymphedema by bioelectrical impedance spectroscopy. Int J Gynecol Cancer 2011;21(2):409-18.

Ward LC. Segmental bioelectrical impedance analysis: an update. Curr Opin Clin Nutr Metab Care 2012;15(5):424-9.

Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996;41(11):2251-69.

Cornish BH, Ward LC. Data analysis in multiple-frequency bioelectrical impedance analysis. Physiol Meas 1998;19(2):275-83.

Kyle UG, Genton L, Slosman DO, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15-98 years. Nutrition 2001;14:534-41.

Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 2003;77(2):331-40.

Heitman bL. Evaluation of body fat estimated from body mass index, skinfolds, and impedance: a comparative study. Eur J Clin Nutr 1990;44:83-7.

Sergi G, Bussolotto M, Perini P, Calliari I, Giantin V, Ceccon A, et al. Accuracy of bioelectrical impedance analysis in estimation of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 1994;38(3):158-65.

Olde RM, Deurenberg P, Jansen R, VAn’t Hof M, Hoefnagels W. Validation of multi-frequency bioelectrical impedance analysis in detecting changes in fluid balance of geriatric patients. J Am Geriatr Soc 1997;45(11):13456-51.

Deurenberg P, Tagliabue A, Schouten FJ. Multi-frequency impedance for the prediction of extracellular water and total body water. Br J Nutr 1995;73(3):349-58.

Bosy-Westphal A, Schautz B, Later W, Kehayias JJ, Gallagher D, Mûller MJ. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr 2013:67 Suppl 1:S14-21.

Segal KR, Gutin B, Presta E, Wang J, Van Itallie TB. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol 1985;58(5):461-3.

Roche AF, Chumlea WC, Guo S. Identification and validation of new anthropometric techniques for quantifying body compositions. Natick (MA): US Army Natick Research, Development and Engineering Center; 2019. TR-85-058.

Khalil SF. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014;14(6):10895-928.

Chumlea WC, Guo SS, Bellisari A, Baumgartner RN. Siervogel RM. Reliability of multiple frequency bioelectric impedance. Am J Hum Biol 1994;6(2):195-202.

Fricke H, Morse S. The electrical resistance and capacity of blood for frequencies between 800 and 4.5 million cycles. J Gen Physiol 1925;9(2):153-67.

Elsen R, Siu, ML, Pineda O, Solomons NW. Sources of variability in bioelectrical impedance determinations in adults. In: Eillis KJ, Yasomura S, Morgan WD, Editors, In vovo body composition studies. London: The Institute of Physical Sciences in Medicine; 1987. p.184-8.

Guadi-Russo E, Toselli S. Influence of various factors on the measurement of multifrequency bioimpe-dance. Homo 2002;53(1);1-16.

Bunt JC, Lohman TG, Boileau RA. Impact of total body fluctuations on estimation of body fat from body density. Med Sci Sport Exerc 1989;21(1):96-100.

McKee JE. Cameron N. Bioelectrical impedance changes during the menstrual cycle. Am J Hum Biol 1996;9(2):155-61.

Gleichauf CN, Roe DA. The menstrual cycle’s effect on the reliability of bioimpedance measurements for assessing body composition. Am J Clin Nutr 1989;50(5):903-7.

Piccoli A, Piazza P, Noventa D, Pillon L, Zaccaria M. A new method for monitoring hydration at high altitude by bioimpedance analysis. Med Sci Sport Exerc 1996;28(12):1517-22.

Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the rxc graph. Kidney Int 1994;46:534-9.

Cox-Raijven PL, Soeters P. Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int J Obes 2000;24(3):271-80.

Cox-Raijven PL, van Kreel B, Soeters PB. Bioelectrical impedance measurements in patients with gastrointestinal disease: validation of the spectrum approach and a comparison of different methods for screening for nutritional depletion. Am J Clin Nutr 2003;78(6):1111-9.

Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clin Nutr 2012;31(6):854-61.

Buffa R, Saragat B, Cabras S, Rinaldi AC, Marini E. Accuracy of specific BIVA for the assessment of body composition in the United States population. Plos One 2013;8(3):e58533.

Marini E, Buffa R, Saragat B, Coin A, Toffanello ED, Berton L, et al. The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin Interv Aging 2012;7:585-91.

Bronhara B, Piccoli A, Pereira JC. Fuzzy linguistic model for bioelectrical impedance vector analysis. Clin Nutr 2012;31(5):710-6.

Gonzalez MC, Barbosa-Silva TG, Bielemann RM, Gallagher D, Haymsfield SB. Phase angle and its determinants in healthy subjects: influence of body composition. Am J Clin Nutr 2016;103(3):712-6.

Kyle UG, Genton L, Pichard C. Low phase angle determined by bioelectrical impedance analysis is associated with malnutrition and nutritional risk at hospital admission. Clin Nutr 2013;32(2):294-9.

Varan HD, Bolayair B, Kara O, Arik G, Kizilarslanoglu MC, Kilic MK, et al. Phase angle assessment by bioelectrical impedance analysis and its predictive value for malnutrition risk in hospitalized geriatric patients. Aging Clin Exp Res 2016;28(6):1121-6.

Hui D, Bansal S, Morgado M Dev R, Chisholm G, Bruera E. Phase angle for prognostication of survival in patients with advanced cancer: preliminary findings. Cancer 2014;120(14):2207-14.

Lee SY, Lee YJ, Yang JH, Kim CM, Choi WS. The association between phase angle of bioelectrical impedance analysis and survival time in advanced cancer patients: preliminary study. Korean J Fam Med 2014;35(5):251-6.

Norman K, Wirth R, Neubaruer M, Eckardt R, Stobäus N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. J Am Med Dir Assoc 2015;16:173e17-22.

Władysiuk MS, Mlak R, Morshed K, Surtel W, Brzozowska A, Małecka-Massalska T. Bioelectrical impedance phase angle as a prognostic indicator of survival in head-and-neck cancer. Curr Oncol 2016;23(5):e481-7.

Ringaitiene D, Gineityte D, Vicka V, Zvirblis T, Norkiene I, Sipylaite J, et al. Malnutrition assessed by phase angle determines outcomes in low-risk cardiac surgery patients. Clin Nutr 2016;35(6):1328-32.

Thibault R, Makhlouf AM, Mulliea A, Gonzalez MC, Kekstas G, Kozjek NR, et al. Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study phase angle project. Intensive Care Med 2016;42(9):1445-53.

Lukaski HC, Kyle UG, Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care 2017;20(5):330-9.

Rinninella E, Cinnoni M, Addolorato G, Triarico S, Ruggiero A, Perna A, et al. Phase angle and impedance ratio: two specular ways to analyze body composition. Ann Clin Nutr 2018;1:1003.

Plank L, Li A. PP166-SUN Bioimpedance illness marker compared to phase angle as a predictor of malnutrition in hospitalized patients. Clin Nutr 2013;32:S85.

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel GJ, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 2004;23(6):1430-53.

Sheean P, Gonzalez C, Prado CM, McKeever L, Hall AM, Braunschweig CA. American Society for Parenteral and Enteral Nutrition clinical guidelines: the validity of body composition assessment in clinical populations. J Parenter Enteral Nutr 2020;44(1):12-43.

Published

2024-06-28

How to Cite

Silairatana, S. (2024). Bioelectrical Impedance Analysis. Thai JPEN วารสารโภชนบำบัด, 32(1), 52–73. Retrieved from https://he02.tci-thaijo.org/index.php/ThaiJPEN/article/view/260757