Assessment of greenhouse gas emissions from food waste management in Bang Khun Thian and Lat Phrao district, Bangkok.
Main Article Content
Abstract
This study aimed to estimate the net GHG emission from waste recycle and reuse at the districts to final disposal in Bang Khun Thian (BKT) district and Lat Phrao (LP) district. The data input obtained from the five annual reports of solid waste disposal (2015-2019). The composition was analyzed by a quartering method for three consecutive seasons. The coefficients also input to the equations were adopted from literatures. Based on the model developed by Thailand Greenhouse Gas Management Organization, USEPA and the 2006-IPCC Guidelines, the annual emissions of CO2, CH4 and N2O were calculated. Assumingly, these three essential gases were mainly emitted during the anaerobic decomposition of compostable organics and fuel and electricity usage. As a result, BKT and LP districts generated food wastes about 53,214.76 (SD 4,233.21) tonnes/year and 38,639.09 (SD 2,811.31) tonnes/year, respectively. The landfill management emitted the highest GHGs with the rate of 15,916,889.94 (SD 959,364.36) kgCO2e/yr for BKT and for LP with 9,456,521.28 (SD 788,409.40) kgCO2e/yr. The process of food waste disposal of BKT emitted GHGs about 15,916,889.94 (SD 959,364.36) kgCO2e/yr or 341.48 (SD 5.41) kgCO2e/ton-food waste. Likewise, management of LP emitted about 9,456,521.28 (SD 788,409.40) kgCO2e/yr or 276.33 (SD 33.04) kgCO2e/ton. This difference between the two districts is statistically significant (p-value 0.012). Therefore, to reduce amount of food waste going to landfill, food loss and waste reduction or waste utilization at the districts is likely to be the key mitigation, resulting in the reduction of GHGs emission.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรุงเทพมหานคร, สำนักสิ่งแวดล้อม. รายงานสถานการณ์คุณภาพสิ่งแวดล้อม กรุงเทพมหานคร
พ.ศ. 2562-2563. กรุงเทพฯ; 2564.
กรุงเทพมหานคร, สำนักยุทธศาสตร์และประเมินผล. แผนพัฒนากรุงเทพมหานครระยะ 20 ปี
(พ.ศ. 2556-2575). กรุงเทพฯ: บริษัท พิมพ์ดี จำกัด; 2558.
ปวีณา พานิชยพิเชษฐ์. การลดก๊าซเรือนกระจกจากการจัดการขยะมูลฝอย. สำนักวิเคราะห์และติดตามประเมินผล องค์การบริหารจัดการก๊าซเรือนกระจก; 2560.
องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน). คู่มือการจัดทำข้อมูลปริมาณก๊าซเรือนกระจกระดับเมือง. พิมพ์ครั้งที่ 2. กรุงเทพฯ; 2559.
USEPA. Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions from Selected Source Categories: Solid Waste Disposal Wastewater Treatment Ethanol Fermentation. Available at: URL: https://www.epa.gov/air-emissions-factors-and-quantification/
greenhouse-gas-emissions-estimation-methodologies-biogenic. Accessed December 14, 2010.
IPCC. Guidelines for National Greenhouse Gas Inventories. Available at: URL: https://www.ipcc-nggip.iges.or.jp/public/2006gl/. Accessed October 04, 2020.
IPCC. AR5 Synthesis Report. P.103. Available at: URL: https://www.ipcc.ch/report/ar5/syr/. Accessed September 23, 2020.
องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน). Emission Factor. แหล่งที่มา : URL: http://thaicarbonlabel.tgo.or.th/products_emission/products_emission.pnc. สืบค้นเมื่อวันที่ 15 สิงหาคม 2563.
Kim MH, Kim JW. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci Total Environ. 2010;408(19):3998-4006.
Zhao W, der Voet Ev, Zhang Y, Huppes G. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China. Science of The Total Environment. 2009;407(5):1517-1526.
Mohareb EA, MacLean HL, Kennedy CA. Greenhouse Gas Emissions from waste management--assessment of quantification methods. Journal of the Air & Waste Management Association. 2011(5):480.
Eriksson M, Strid I, Hansson P-A. Carbon footprint of food waste management options in the waste hierarchy – a Swedish case study. Journal of Cleaner Production. 2015;93:115-125.
Birney CI, Franklin KF, Davidson FT, Webber ME. An assessment of individual foodprints attributed to diets and food waste in the United States. Environmental Research Letters. 2017;12(10).
Salemdeeb R, Vivanco DF, Al-Tabbaa A, Zu Ermgassen EK. A holistic approach to the environmental evaluation of food waste prevention. Waste Management. 2017;59:442-450.
Moult JA, Allan SR, Hewitt CN, Berners-Lee M. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy. 2018;77:50-58.
Tseng W-L, Chiueh P-T. Urban Metabolism of Recycling and Reusing Food Waste:
A Case Study in Taipei City. Procedia Engineering. 2015;118:992-999.
Ližbetin J, Hlatká M, Bartuška L. Issues Concerning Declared Energy Consumption and Greenhouse Gas Emissions of FAME Biofuels. Sustainability. 2018;10(9).
Shin K, Cheong J-P. Estimating Transportation-Related Greenhouse Gas Emissions in the Port of Busan, S. Korea. Asian Journal of Atmospheric Environment. 2011;5(1):41-46.
Shams S, Sahu JN, Rahman SMS, Ahsan A. Sustainable waste management policy in Bangladesh for reduction of greenhouse gases. Sustainable Cities and Society. 2017;33:18-26.
Yaman C, Anil I, Jaunich MK, Blaisi NI, Alagha O, Yaman AB, et al. Investigation and modelling of greenhouse gas emissions resulting from waste collection and transport activities. Waste Manag Res. 2019;37(12):1282-1290.
Liu M, Tan Z, Fan X, Chang Y, Wang L, Yin X. Application of life cycle assessment for municipal solid waste management options in Hohhot, People's Republic of China. Waste Manag Res. 2021;39(1):63-72.
Pleissner D. Recycling and reuse of food waste. Current Opinion in Green and Sustainable Chemistry. 2018;13:39-43.