ACR TI-RADS Classification in Predicting Thyroid Malignancy at Prachuapkhirikhan Hospital
Keywords:
ACR TI-RADS (American College of Radiology Thyroid Imaging, Reporting and Data System), thyroid cancer, fine-needle aspiration, ultrasoundAbstract
Objective: To determine the useful of ACR TI-RADS classification in predicting thyroid malignancy at Prachuapkhirikhan Hospital.
Material and Methods: The radiological reports of patients which diagnosed as ACR TI-RADS classification and pathological records at Prachuapkhirikhan Hospital from January 1, 2018 to July 31, 2018 were retrospectively studied. The risk of malignancy of each ACR TI-RADS category was determined. Statistical accesses of some major ultrasound features were analyzed.
Results: Total of 137 patients who underwent ultrasound of thyroid glands at Prachuapkhirikhan Hospital, 55 patients were included. Seven out of 55 (12.7%) patients were thyroid cancer. The risk of malignancy in ACR TI-RADS 3, 4 and 5 categories were about 5.6%, 11.1% and 57.1%, respectively. Specificity of taller-than-wide shape, extra-thyroidal extension, irregular or lobulated margins, very hypoechogenicity and microcalcification in ultrasound features for thyroid malignancy were 100%, 100%, 87.5%, 77.1% and 68.8%, respectively.
Conclusion: For predicting thyroid malignancy. Fine-needle biopsy is most often done in a suspected malignant nodule and ACR TI-RADS classification is useful.
References
2. Songsaeng D, Soodchuen S, Korpraphong P, et al. Siriraj Thyroid Imaging Reporting and Data System and its efficacy. Siriraj Med J 2017;69:262-7.
3. Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol 2017;14:587-95.
4. Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009;94:1748-51.
5. Park JY, Lee HJ, Jang HW, et al. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 2009;19:1257-64 .
6. Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step establishing better stratification of cancer risk. Radiology 2011;260:892-9.
7. Moifo B, Takoeta EO, Tambe J, et al. Reliability of thyroid imaging reporting and data system (TIRADS) classification in differentiating benign from malignant thyroid nodules. Open J Radiol 2013;3:103-7.
Downloads
Published
How to Cite
Issue
Section
License
ลิขสิทธิ์บทความเป็นของผู้เขียนบทความ แต่หากผลงานของท่านได้รับการพิจารณาตีพิมพ์ลงวารสารแพทย์เขต 4-5 จะคงไว้ซึ่งสิทธิ์ในการตีพิมพ์ครั้งแรกด้วยเหตุที่บทความจะปรากฎในวารสารที่เข้าถึงได้ จึงอนุญาตให้นำบทความในวารสารไปใช้ประโยชน์ได้ในเชิงวิชาการโดยจำเป็นต้องมีการอ้างอิงถึงชื่อวารสารอย่างถูกต้อง แต่ไม่อนุญาตให้นำไปใช้ในเชิงพาณิชย์
