Detection of Vaccine-Derived Measles, Mumps, and Rubella Viruses Found in Patient Specimens in Thailand, 2017−2024
Measles, Mumps, and Rubella Vaccine-Derived Strains in Thailand
Keywords:
MMR vaccine-derived Measles virus, MMR vaccine-derived Mumps virus, MMR vaccine-derived Rubella virusAbstract
The Measles-Mumps-Rubella (MMR) vaccine is a live attenuated vaccine. Although the MMR vaccine is generally safe, it may cause adverse effects such as high fever, joint pain, rash, or parotid gland swelling. In rare cases, infection may occur due to the vaccine strain itself. This study aimed
to analyze the genetic sequences of measles, mumps, and rubella viruses using the Sanger sequencing method from viral isolates collected from patients during 2017 and 2024. The obtained sequences were compared with the World Health Organization (WHO) reference strains to monitor the presence of imported strains, mutations, and vaccine-derived virus strains in Thailand. The results showed that among 1,862 measles, 26 mumps, and 12 rubella virus samples, the vaccine strains were detected in 4 measles virus samples (0.21%), 4 mumps virus samples (14.29%), and 1 rubella virus sample (8.33%). These findings provided evidence supporting the possibility of vaccine-derived infections and indicated the circulation of local strains within the country. This information is essential for viral surveillance to control disease outbreaks and prevent adverse events related to the vaccination. The data from this study will be useful for public health authorities in developing future national immunization strategy planning to enhance disease control effectiveness.
References
กระทรวงสาธารณสุข. กำหนดการให้วัคซีนตามแผนงานสร้างเสริมภูมิคุ้มกันโรคของกระทรวงสาธารณสุข ปี 2567. [ออนไลน์]. 2568; [สืบค้น 13 ก.พ. 2568]; [1 หน้า]. เข้าถึงได้ที่: URL: https://ddc.moph.go.th/uploads/publish/1510320231225092421.pdf.
ราชวิทยาลัยกุมารแพทย์แห่งประเทศไทย, สมาคมโรคติดเชื้อในเด็กแห่งประเทศไทย, กระทรวงสาธารณสุข. แนวทางเวชปฏิบัติโรคหัด หัดเยอรมัน และหัดเยอรมันแต่กำเนิด ฉบับปรับปรุง เรื่องการเฝ้าระวังโรค ปี พ.ศ. 2565. [ออนไลน์]. 2568; [สืบค้น 15 ก.พ. 2568]; [84 หน้า]. เข้าถึงได้ที่: URL: https://www.ddc.moph.go.th/uploads/publish/1353820221130065311.pdf.
สถาบันวัคซีนแห่งชาติ. MMR Vaccine สถานการณ์การใช้วัคซีนรวม หัด คางทูม หัดเยอรมัน. [ออนไลน์]. 2568; [สืบค้น 15 ก.พ. 2568]; [10 หน้า]. เข้าถึงได้ที่: URL: https://vims.nvi.go.th/VIMSFile/Factsheet/MMR2.pdf.
สำนักโรคติดต่อทั่วไป กรมควบคุมโรค กระทรวงสาธารณสุข. ตำราวัคซีนและการสร้างเสริมภูมิคุ้มกันโรค ปี 2556. [ออนไลน์]. 2558; [สืบค้น 15 ก.พ. 2568];[314 หน้า]. เข้าถึงได้ที่: URL: https://ddc.moph.go.th/uploads/publish/294120191209024047.pdf.
Mulders MN. Annex C1 measles genotyping RT-PCR (CDC). [online]. 2020; [cited 2025 Feb 15]; [6 screens]. Available from: URL: https://www.technet-21.org/en/resources/guidance/annex-c01-measles-genotyping-rt-pcr-cdc.
พัชชา อินคำสืบ, อัจฉริยา ลูกบัว, อธิวัฒน์ ปริมสิริคุณาวุฒิ, ประสพชัย อร่ามรุ่งโรจน์, เพียงใจ อามีนเจริญ, จารุวรรณ ใจอ้าย, และคณะ. การพัฒนาวิธีตรวจหาสารพันธุกรรมของไวรัสคางทูมในตัวอย่างส่งตรวจด้วยวิธี Reverse Transcription-Polymerase Chain Reaction (RT-PCR). ว กรมวิทย พ 2557; 56(1): 20–8.
Mulders MN. Annex B12.2 real-time RT-PCR assays for the detection of rubella virus RNA and human RNase P mRNA using the ABI 7500 real-time thermocycler. [online]. 2021; [cited 2025 Feb 15]; [14 screens]. Available from: URL: https://www.technet21.org/en/resources/guidance/annex-b12-2-real-time-rt-pcrassays-for-the-detection-of-rubella-virusrna-and-human-rnase-p-mrna-using-theabi-7500-real-time-thermocycler.
Mulders MN. CDC protocols for the molecular epidemiology of measles virus and rubella virus; version of 03/06/2012. Annex C2 rubella genotyping RT-PCR 2-fragment, Qiagen (CDC). [online]. 2020; [cited 2025 Feb 15]; [6 screens]. Available from: URL: https://cdn.who.int/media/docs/defaultsource/immunization/vpd_surveillance/lab_networks/measles_rubella/manual/updatedannexes-(as-on-2-aug-2021)/annex-c2-rubella-genotyping-rt-pcr_qiagen.docx.
Mulders MN. Using the RECall program for on-line sequence analysis of measles and rubella. [online]. 2020; [cited 2025 Feb 15]; [6 screens]. Available from: URL: https://www.technet21.org/media/com_resources/trl/7641/multi_upload/UsingtheRECallprogram_V6.pdf.
MEGA Software. The 12th version of the molecular evolutionary genetics analysis, MEGA12. Constructing Phylogenetic tree MEGA12.[online]. 2024; [cited 2025 Feb 15]; [21 screens]. Available from: URL: https://www.megasoftware.net/web_help.
World Health Organization. Measles virus nomenclature update: 2012. Wkly Epidemiol Rec 2012; 87(9): 73–80.
World Health Organization. Mumps virus nomenclature update: 2012. Wkly Epidemiol Rec 2012; 87(22): 217–24.
World Health Organization. Rubella virus nomenclature update: 2013. Wkly Epidemiol Rec 2013; 88(32): 337–43.
Mulders MN. Annex C09. Phylogenetic analysis (MEGA v7 or X) of measles and rubella sequences assembled using GeneStudio.[online]. 2020; [cited 2025 Jun 24]; [5 screens]. Available from: URL: https://www.technet-21.org/en/resources/guidance/annex-c09-phylogenetic-analysis-mega-v7-or-x-of-measles-and-rubella-sequences-assembled-using-genestudio.
Kaye M, Chibo D, Birch C. Comparison of Bayesian and maximum-likelihood phylogenetic approaches in two legal cases involving accusations of transmission of HIV. AIDS Res Hum Retroviruses 2009; 25(8): 741–8.
Ahmed AOM, Al-Kutubi HS, Ibrahim NA. Comparison of the Bayesian and maximum likelihood estimation for Weibull distribution. J Math Stat 2010; 6(2): 100–4.
Churchill L, Rizzuti FA, Fonseca K, Kim J. Vaccine-associated measles in a healthy 40-year-old woman. CMAJ 2018; 190(35): E1046–8.
Bitnun A, Shannon P, Durward A, Rota PA, Bellini WJ, Graham C, et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis 1999; 29(4): 855–61.
Centers for Disease Control and Prevention. Measles pneumonitis following measles-mumps-rubella vaccination of a patient with HIV infection. MMWR Morb Mortal Wkly Rep 1996; 45(28): 603–6.
Hagan JE, Crooke SN, Gunregjav N, Sowers SB, Mercader S, Hickman CJ, et al. Breakthrough measles among vaccinated adults born during the post-soviet transition period in Mongolia. Vaccines 2024; 12(6): 695. (12 pages).
Bakker W, Mathias R. Mumps caused by an inadequately attenuated measles, mumps and rubella Vaccine. Can J Infect Dis 2001; 12(3): 144–8.
Gilliland SM, Jenkins A, Parker L, Somdach N, Pattamadilok S, Incomserb P, et al. Vaccinerelated mumps infections in Thailand and the identification of a novel mutation in the mumps fusion protein. Biologicals 2013; 41(2): 84–7.
Paz M, Padilla M, Perez E, Sauceda J, Camacho A. Vaccine-associated rubella caused by the RA 27/3 strain. Vaccines 2022; 11(1): 65. (5 pages).
World Health Organization. Manual for thelaboratory-based surveillance of measles, rubella, and congenital rubella syndrome. Chapter 4 Antibody detection methods for laboratory confirmation of measles, rubella, and CRS. [online]. 2018; [cited 2025 Feb 15]; [15 screens]. Available from: URL: https://www.who.int/publications/m/item/chapter-4-manual-for-the-laboratory-based-surveillance-of-measles-rubella-and-congenitalrubella-syndrome.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 BULLETIN OF THE DEPARTMENT OF MEDICAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
