miRNAs: Perspective towards the use for body fluid identification

Authors

  • Pairoa Praihirunkit Department of Forensic Sciences, Faculty of Allied Health Sciences, Thammasat University

DOI:

https://doi.org/10.33192/Smj.2020.70

Keywords:

miRNA, forensically relevant body fluids, body fluid identification, crime, forensic casework

Abstract

Identification of body fluids provides an important lead for crime investigation by which it can give a clue about the nature of the case and assist crime reconstruction. In the last decade, miRNAs have emerged as promising markers for body fluid identification due to their cell- /tissue-specificities. miRNAs are a class of small noncoding RNAs with ~ 22 nucleotides in length and their small sizes enable them to be resistant to degradation. The possibility to adopt miRNA markers for body fluid identification has been studied in various forensically relevant body fluids. This review aims to give a comprehensive summary of proposed miRNA markers for identifying five body fluids (venous blood, menstrual blood, semen, vaginal secretion and saliva). Based on numerous evaluations of miRNA markers and the development of model analysis using a single panel of miRNAs to identify unknown samples, proposed panels and analysis strategies were gathered and discussed.

References

1. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155-D62.
2. Iftikhar H, Carney GE. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing: Potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange. Bioessays. 2016;38(4):367-78.
3. Turchinovich A, Samatov TR, Tonevitsky AG, Burwinkel B. Circulating miRNAs: cell-cell communication function? Front Genet. 2013;4:119.
4. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223-33.
5. Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci. 2012;37(11):460-5.
6. Gallo A, Tandon M, Alevizos I, Illei GG. The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes. Plos One. 2012;7(3).
7. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. P Natl Acad Sci USA. 2011;108(12):5003-8.
8. de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017;35(9):872-+.
9. Silva SS, Lopes C, Teixeira AL, Carneiro de Sousa MJ, Medeiros R. Forensic miRNA: potential biomarker for body fluids? Forensic Sci Int Genet. 2015;14:1-10.
10. Bavykin AS. Circulating microRNAs in the Identification of Biological Fluids: A New Approach to Standardization of Expression-Based Diagnostics. Mol Biol+. 2017;51(4):506-13.
11. Dumache R, Rogobete AF, Sandesc D, Bedreag OH, Ciocan V, Muresan C, et al. Use of Circulating and Cellular miRNAs Expression in Forensic Sciences. Journal of interdisciplinary medicine. 2017;2(3):235–41.
12. Courts C, Madea B. Micro-RNA - A potential for forensic science? Forensic Sci Int. 2010;203(1-3):106-11.
13. Sijen T. Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int-Gen. 2015;18:21-32.
14. Courts C, Madea B. Specific Micro-RNA Signatures for the Detection of Saliva and Blood in Forensic Body-fluid Identification. J Forensic Sci. 2011;56(6):1464-70.
15. Rekker K, Saare M, Roost AM, Salumets A, Peters M. Circulating microRNA Profile throughout the menstrual cycle. PLoS One. 2013;8(11):e81166.
16. Wang Z, Luo HB, Pan XF, Liao M, Hou YP. A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Sci Int-Gen. 2012;6(3):419-23.
17. Wang Z, Zhang J, Luo HB, Ye Y, Yan J, Hou YP. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int-Gen. 2013;7(1):116-23.
18. Wang Z, Zhou D, Cao YD, Hu Z, Zhang SH, Bian YN, et al. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine (R) System (Ion PGM (TM) System). Forensic Sci Int-Gen. 2016;20:140-6.
19. El-Mogy M, Lam B, Haj-Ahmad TA, McGowan S, Yu D, Nosal L, et al. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. Bmc Genomics. 2018;19.
20. KR OL, Glynn CL. Investigating the Isolation and Amplification of microRNAs for Forensic Body Fluid Identification. Microrna. 2018;7(3):187-94.
21. Fang C, Zhao J, Li JB, Qian JL, Liu X, Sun QF, et al. Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction. Forensic Sci Int-Gen. 2019;38:32-8.
22. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 2010;124(3):217-26.
23. Hanson EK, Mirza M, Rekab K, Ballantyne J. The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression. Electrophoresis. 2014;35(21-22):3087-95.
24. Park JL, Park SM, Kwon OH, Lee HC, Kim JY, Seok HH, et al. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification. Electrophoresis. 2014;35(21-22):3062-8.
25. Sauer E, Reinke AK, Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci Int-Gen. 2016;22:89-99.
26. Zubakov D, Boersma AWM, Choi Y, van Kuijk PF, Wiemer EAC, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. International Journal of Legal Medicine. 2010;124(3):217-26.
27. Mayes C, Houston R, Seashols-Williams S, LaRue B, Hughes-Stamm S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Legal Med-Tokyo. 2019;38:45-50.
28. Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations. Plos One. 2017;12(2).
29. Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, et al. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis. 2016;37(21):2780-8.
30. Layne TR, Green RA, Lewis CA, Nogales F, Cruz TCD, Zehner ZE, et al. microRNA Detection in Blood, Urine, Semen, and Saliva Stains After Compromising Treatments. J Forensic Sci. 2019;64(6):1831-7.
31. Tian H, Lv ML, Li ZL, Peng D, Tan Y, Wang H, et al. Semen-specific miRNAs: Suitable for the distinction of infertile semen in the body fluid identification? Forensic Sci Int-Gen. 2018;33:161-7.
32. Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Hirai E, et al. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Sci Rep-Uk. 2019;9.
33. Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387(2):303-14.
34. Sauer E, Reinke AK, Courts C. Validation of forensic body fluid identification based on empirically normalized miRNA expression data. Forens Sci Int-Gen S. 2015;5:E462-E4.
35. Wang Z, Zhang J, Wei W, Zhou D, Luo HB, Chen XG, et al. Identification of Saliva Using MicroRNA Biomarkers for Forensic Purpose. J Forensic Sci. 2015;60(3):702-6.
36. Schenkels LCPM, Veerman ECI, Amerongen AVN. Biochemical-Composition of Human Saliva in Relation to Other Mucosal Fluids. Crit Rev Oral Biol M. 1995;6(2):161-75.
37. Hanson EK, Ballantyne J. Circulating microRNA for the identification of forensically relevant body fluids. Methods Mol Biol. 2013;1024:221-34.
38. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733-41.
39. Tong DY, Jin Y, Xue TY, Ma XY, Zhang JX, Ou XL, et al. Investigation of the Application of miR10b and miR135b in the Identification of Semen Stains. Plos One. 2015;10(9).
40. Li ZL, Bai P, Peng D, Wang H, Guo YD, Jiang YJ, et al. Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Sci Int-Gen. 2017;30:24-33.
41. Wang Z, Zhao XY, Hou YP. Exploring of microRNA markers for semen stains using massively parallel sequencing. Forens Sci Int-Gen S. 2017;6:E107-E9.
42. Dorum G, Ingold S, Hanson E, Ballantyne J, Russo G, Aluri S, et al. Predicting the origin of stains from whole miRNome massively parallel sequencing data. Forensic Sci Int Genet. 2019;40:131-9.
43. Sirker M, Fimmers R, Schneider PM, Gomes I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci Int-Gen. 2017;27:41-9.
44. Courts C, Pfaffl MW, Sauer E, Parson W. Pleading for adherence to the MIQE-Guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet. 2019;42:e21-e4.
45. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, et al. MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. Bmc Mol Biol. 2010;11:74.
46. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22.
47. Haas C, Hanson E, Anjos MJ, Bar W, Banemann R, Berti A, et al. RNA/DNA co-analysis from blood stains-Results of a second collaborative EDNAP exercise. Forensic Sci Int-Gen. 2012;6(1):70-80.
48. Carnevali E, Lacerenza D, Severini S, Alessandrini F, Bini C, Di Nunzio C, et al. A GEFI collaborative exercise on DNA/RNA co-analysis and mRNA profiling interpretation. Forens Sci Int-Gen S. 2017;6:E18-E20.
49. van den Berge M, Carracedo A, Gomes I, Graham EAM, Haas C, Hjort B, et al. A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results. Forensic Sci Int-Gen. 2014;10:40-8.
50. Haas C, Hanson E, Morling N, Ballantyne J. Collaborative EDNAP exercises on messenger RNA/DNA co-analysis for body fluid identification (blood, saliva, semen) and STR profiling. Forensic Science International: Genetics Supplement Series. 2011;3(1):e5-e6.
51. Omelia EJ, Uchimoto ML, Williams G. Quantitative PCR analysis of blood- and saliva-specific microRNA markers following solid-phase DNA extraction. Anal Biochem. 2013;435(2):120-2.
52. van der Meer D, Uchimoto ML, Williams G. Simultaneous Analysis of Micro-RNA and DNA for Determining the Body Fluid Origin of DNA Profiles. J Forensic Sci. 2013;58(4):967-71.
53. Lewis CA, Layne TR, Seashols-Williams S. Detection of microRNAs in DNA Extractions for Forensic Biological Source Identification. J Forensic Sci. 2019;64(6):1823-30.
54. Watanabe K, Akutsu T. Evaluation of a co-extraction kit for mRNA, miRNA and DNA methylation-based body fluid identification. Legal Med-Tokyo. 2020;42.

Downloads

Published

19-08-2020

How to Cite

Praihirunkit, P. (2020). miRNAs: Perspective towards the use for body fluid identification. Siriraj Medical Journal, 72(6), 512–526. https://doi.org/10.33192/Smj.2020.70

Issue

Section

Review Article