Development of the Tablet Bacterial Larvicide Formulation and the Effectiveness against Thai-border Population Strains of the Mosquito Culex quinquefasciatus

Authors

  • Uruyakorn Chansang National Institute of Health, Department of Medical Sciences
  • Nittaya Methawanitpong National Institute of Health, Department of Medical Sciences
  • Chitti Chansang National Institute of Health, Department of Medical Sciences
  • Nuntaporn Phonsuwan National Institute of Health, Department of Medical Sciences
  • Porntida Petsuwan National Institute of Health, Department of Medical Sciences
  • Pornchai Wiriyasaranont National Institute of Health, Department of Medical Sciences
  • Danaporn Saraprug National Institute of Health, Department of Medical Sciences
  • Ballang Uppapong National Institute of Health, Department of Medical Sciences

Keywords:

Bacillus thuringiensis var. Israelensis (Bti), Bacillus sphaericus (Bsph), Temephos, Cx. quinquefasciatus, GIS map

Abstract

          Bacterial larvicides have been used for vector control according to the problems of insecticide resistance and environmental residual effect. Available larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bsph) are expensive and some of them are not effective enough to control mosquito larvae. This study was carried out to produce tablet Bti which was extended from the previous study on the production of powder Bti. The preliminary trials for effectiveness of the tablet Bti were performed for the potency and simulated field residual effect against standard strain Aedes aegypti larvae. Then the tablet Bti was evaluated for the resistance of Culex quinquefasciatus larvae which was collected from 27 provinces located at 3 Thai borders along Myanmar, Laos and Cambodia. The results showed that the tablet Bti has potency 2,150 ITU/mg product and covered 28-day residual in simulated field conditions. The resistance of mosquitoes from the 3 areas to tablet Bti were 0.36-1.21, 0.72-1.20 and 0.92-1.39 fold, respectively when compared to standard strain of mosquito. In order to obtain the adequate data on larvicide using for public health mosquito control program, the tests were run in parallel to the field strain of Culex mosquito to the initial powder Bsph produced in the same laboratory and commercial temephos. It was found that the mosquitoes from the 3 borders showed the RR to Bsph at 0.87-2.66, 1.99-3.17 and 3.50-7.03, and to temephos at 0.47-3.01, 1.04-1.86 and 1.07-2.45 fold, respectively. These initiated data were presented as the GIS map construction.

References

WHO. Bacillus thuringiensis israelensis (Bti) in drinking-water, background document for development of WHO guidelines for drinking-water quality. Geneva: World Health Organization; 2009.

สำนักระบาดวิทยา. โรคเท้าช้าง. ใน: สรุปรายงานการเฝ้าระวังโรค ประจำปี 2557. นนทบุรี: กรมควบคุมโรค กระทรวงสาธารณสุข; 2558. หน้า 41-42.

สำนักระบาดวิทยา. โรคเท้าช้าง. ใน: สรุปรายงานการเฝ้าระวังโรค ประจำปี 2558. นนทบุรี: กรมควบคุมโรค กระทรวงสาธารณสุข; 2559. หน้า 45-46.

สำนักระบาดวิทยา. โรคเท้าช้าง. ใน: สรุปรายงานการเฝ้าระวังโรค ประจำปี 2559. นนทบุรี: กรมควบคุมโรค กระทรวงสาธารณสุข; 2560. หน้า 45-46.

Triteeraprapab S, Kanjanopas K, Suwannadabba S, Sangprakarn S, Poovorawan Y, Scott AL. Transmission of the nocturnal periodic strain of Wuchereria bancrofti by Culex quinquefasciatus: establishing the potential for urban filariasis in Thailand. Epidemiol Infect 2000; 125(1): 207-12.

Chansang U, Methawanitpong N, Saraprug D, Phetsuwan P, Ponsuwan N, Wiriyasaranont P. Development of larvicidal Bacillus thuringiensis var. israelensis by the Thai NIH and its comparison to Bacillus sphaericus and temephos in a selection experiment with the mosquito Culex quinquefasciatus. Int J Appl Microbiol Biotechnol Res 2020; 8(5): 58-65.

Dulmage HT, Correa JA, Gallegos-Morales G. Potential for improved formulation of Bacillus thuringiensis israelensis through standardization and fermentation development. In: de Barjac H, Sutherland DJ, editors. Bacterial control of mosquitoes and black flies. London: Rutgers University Press, 1990. p. 110-133.

Racloz V, Ramsey R, Tong S, Hu W. Surveillance of dengue fever virus: a review of epidemiological models and early warning systems. PLoS Negl Trop Dis 2012; 6(5): e1648. 9 pages.

Chowanadisai L, Methawanitphong N, U-mai N. Effectiveness of bacterial larvicide products from Thai strain Bacillus thuringiensis subsp. israelensis. In: Ngo DB, Akhuest RJ, Dean DH, editors. Biotechnology of Bacillus thuringiensis. Hanoi: Science and Technic Publishing House 2005. p. 365-382.

Buchanan RE, Gibbons NE, editors. Bergey’s manual of determinative bacteriology. 8th ed. Baltimore: Williams & Wilkins; 1974.

WHO. Bioassay method for the titration of Bacillus sphaericus preparations with RB 80 standard. In: Informal consultations on the development of Bacillus sphaericus as a microbial larvicide. Geneva: World Health Organization; 1985. p. 20-21.

WHO. Instruction for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva: World Health Organization; 1981.

Kahindi SC, Muriu S, Derua YA, Wang X, Zhou G, Lee MC, et al. Efficacy and persistence of long-lasting microbial larvicides against malaria vectors in western Kenya highlands. Parasit Vectors [serial online] 2018. Jul [cited 2020 Jun 22]; 11(1): [10 screens]. Available from: URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069807.

Dunford JC, Stoops CA, Estep AS, Britch SC, Richardson AG, Walker TW, et al. SR450 and Superhawk XP applications of Bacillus thuringiensis israelensis against Culex quinquefasciatus. J Am Mosq Control Assoc 2014; 30(3): 191-8.

Triteeraprapab S, Nuchprayoon I, Porksakorn C, Poovorawan Y, Scott AL. High prevalence of Wuchereria bancrofti infection among Myanmar migrants in Thailand. Ann Trop Med Parasitol 2001; 95(5): 535-8.

Su T, Mulla MS. Field evaluation of new water-dispersible granular formulations of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. J Am Mosq Control Assoc 1999; 15(3): 356-65.

Zahiri NS, Su T, Mulla MS. Strategies for the management of resistance in mosquitoes to the microbial control agent Bacillus sphaericus. J Med Entomol 2002; 39(3): 513-20.

Tabbabi A, Daaboub J, Laamari A, Cheikh RB, Feriani M, Boubaker C, et al. Evaluation of resistance to temephos insecticide in Culex pipiens pipiens larvae collected from three districts of Tunisia. Afr Health Sci 2019; 19(1): 1361-7.

Xu Z, Bambrick H, Yakob L, Devine G, Lu J, Frentiu FD, et al. Spatiotemporal patterns and climatic drivers of severe dengue in Thailand. Sci Total Environ 2019; 656: 889-901.

วัชรพงษ์ แสงนิล, จารุวรรณ์ วงบุตดี. การประยุกต์ใช้ระบบสารสนเทศภูมิศาสตร์ เพื่อจำแนกพื้นที่เสี่ยงต่ออุบัติการณ์โรคมาลาเรียในเขตพื้นที่ชายแดงไทย-ลาว-กมั พูชา จังหวดั ศรีสะเกษ และจังหวัดอุบลราชธานี. วารสารสาธารณสุขศาสตร์ 2557; 44(3): 260-72.

Downloads

Published

30-12-2020

How to Cite

1.
Chansang U, Methawanitpong N, Chansang C, Phonsuwan N, Petsuwan P, Wiriyasaranont P, Saraprug D, Uppapong B. Development of the Tablet Bacterial Larvicide Formulation and the Effectiveness against Thai-border Population Strains of the Mosquito Culex quinquefasciatus. ว กรมวิทย พ [internet]. 2020 Dec. 30 [cited 2025 Dec. 12];62(4):330-42. available from: https://he02.tci-thaijo.org/index.php/dmsc/article/view/244548

Issue

Section

Original Articles