การพัฒนาชุดตรวจหลักการอีไลซาสำหรับตรวจทางห้องปฏิบัติการทางน้ำเหลืองวิทยาโรคโควิด-19

ผู้แต่ง

  • ลภัสรดา มุ่งมงคล สถาบันชีววิทยาศาสตร์ทางการแพทย์ กรมวิทยาศาสตร์การแพทย์
  • พรทิพย์ ไชยยะ สถาบันชีววิทยาศาสตร์ทางการแพทย์ กรมวิทยาศาสตร์การแพทย์
  • ภาณุพันธ์ ปัญญาใจ สถาบันชีววิทยาศาสตร์ทางการแพทย์ กรมวิทยาศาสตร์การแพทย์
  • สกุลรัตน์ สุนทรฉัตราวัฒน์ สถาบันชีววิทยาศาสตร์ทางการแพทย์ กรมวิทยาศาสตร์การแพทย์
  • สุมาลี ชะนะมา สถาบันวิจัยวิทยาศาสตร์สาธารณสุข กรมวิทยาศาสตร์การแพทย์
  • อาชวินทร์ โรจนวิวัฒน์ สถาบันชีววิทยาศาสตร์ทางการแพทย์ กรมวิทยาศาสตร์การแพทย์
  • ปนัดดา เทพอัคศร สถาบันชีววิทยาศาสตร์ทางการแพทย์ กรมวิทยาศาสตร์การแพทย์

คำสำคัญ:

โควิด-19, อีไลซา, SARS-CoV-2, อิมมูโนโกลบูลิน เอ็ม, อิมมูโนโกลบูลิน จี

บทคัดย่อ

        การแพร่ระบาดใหญ่ของโรคโควิด-19 จากเชื้อ SARS-CoV-2 ก่อให้เกิดพยาธิสภาพในระบบทางเดินหายใจที่หลากหลายโดยเฉพาะก่อให้เกิดโรคปอดบวมรุนแรงทั่วโลก การศึกษานี้ได้พัฒนาวิธีวิเคราะห์ด้วยหลักการอีไลซาเพื่อตรวจวัดแอนติบอดีต่อเชื้อไวรัสโคโรนาสายพันธุ์ใหม่ 2019 ในตัวอย่างเลือดของผู้ติดเชื้อและศึกษาปัจจัยที่มีผลต่อการวิเคราะห์ ได้แก่ ความเข้มข้นของโมเลกุลที่ถูกตรึงไว้จับแอนติบอดีเป้าหมาย, อัตราส่วนการเจือจางตัวอย่าง, สารละลายบล็อกกิ้ง และความเข้มข้นของโมเลกุลที่ติดฉลากด้วยเอนไซม์ ผลการวิเคราะห์พบว่าอีไลซาสำหรับไอจีเอ็มที่ค่าจุดตัดที่ 3.2 หน่วยอีไลซา ซึ่งให้ค่าความไวที่ร้อยละ 41.46 และความจำเพาะร้อยละ 99 โดยในส่วนของอีไลซาเพื่อตรวจไอจีจีที่ค่าจุดตัด 2.2 หน่วยอีไลซาให้ค่าความไวที่ร้อยละ 60.98 และความจำเพาะร้อยละ 100 นอกจากนี้พบว่าค่าความไวของอีไลซาสำหรับไอจีเอ็มและไอจีจีเพิ่มขึ้นเป็นร้อยละ 51.28 และ 89.74 ตามลำดับ ขึ้นกับระยะเวลาของการติดเชื้อ การศึกษานี้แสดงว่าชุดตรวจที่พัฒนาขึ้นสามารถนำมาใช้ตรวจหาแอนติบอดีต่อเชื้อ SARS-CoV-2 ได้

References

Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don't. Microbiol Aust 2020; 41(1): 45-50.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.

Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: a literature review. J Clin Neurosci 2020; 77: 8-12.

World Health Organization. Novel coronavirus (COVID-19). [online]. 2020; [cited 20 May 2020]; [10 screens]. Available from: URL: https://www.who.int/thailand/emergencies/novel-coronavirus-2019.

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1-9.

Tufan A, GÜler AA, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci 2020; 50(SI-1): 620-32.

Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.

Molnar C, Gair J. Adaptive immune response. In: Concepts of biology - 1st Canadian edition. [online]. 2019; [cited 20 May 2020]; [25 screens]. Available from: URL: https://opentextbc.ca/biology/chapter/23-2-adaptive-immune-response.

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955. (13 pages).

Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci 2020; 6(5): 591-605.

Meyer B, Torriani G, Yerly S, Mazza L, Calame A, Arm-Vernez I, et al. Validation of a commercially available SARS-CoV-2 serological immunoassay. Clin Microbiol Infect. [serial online]. 2020; [cited 20 May 2020]; XX(XX): [9 screens]. Available from: URL: https://www.clinicalmicrobiologyandinfection.com/action/showPdf?pii=S1198-743X%2820%2930368-2.

Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol 2012; 32(4): 349-72.

Reed GF, Lynn F, Meade BD. Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunal 2002; 9(6):1235-9.

Wattanaphansak S, Asawakarn T, Gebhart CJ, Deen J. Development and validation of an enzyme-linked immunosorbent assay for the diagnosis of porcine proliferative enteropathy. J Vet Diagn Invest 2008; 20(2): 170-7.

Classen DC, Morningstar JM, Shanley JD. Detection of antibody to murine cytomegalovirus by enzyme-linked immunosorbent and indirect immunofluorescence assays. J Clin Microbiol 1987; 25(4): 600-4.

Centers for Disease Control and Prevention (CDC). COVID-19 in Thailand: watch - level 1, COVID-19 risk in Thailand is low, new cases are decreasing or stable. [online]. 2020; [cited 2020 Sep 3]; [2 screens]. Available from: URL: https://wwwnc.cdc.gov/travel/notices/watch/coronavirus-thailand

Downloads

เผยแพร่แล้ว

25-09-2020

ฉบับ

บท

นิพนธ์ต้นฉบับ (Original Articles)