Anti-inflammatory Activity on Skin Cells, Antibacterial and Antifungal Activities of Methanolic Thai Hemp Leaves Extracts

Anti-inflammatory, Antibacterial and Antifungal Activities of Thai Hemp Leaves Extracts

Authors

  • Prapatsorn Tipparat Regional Medical Sciences Center 1 Chiang Mai, Department of Medical Sciences
  • Prachya Kongtawelert Faculty of Medicine, Chiang Mai University
  • Natthachai Duangnil Regional Medical Sciences Center 1 Chiang Mai, Department of Medical Sciences
  • Sarinya Julsrigivan Regional Medical Sciences Center 1 Chiang Mai, Department of Medical Sciences
  • Patcharin Juntranimit Regional Medical Sciences Center 1 Chiang Mai, Department of Medical Sciences
  • Sarita Pinmanee Highland Research and Development Institute (Public Organization), Chiang Mai

Keywords:

Anti-inflammatory, Antibacterial, Antifungal, Antioxidant, Thai hemp leaves extracts

Abstract

         Since The Thai government has a policy for promoting hemp (Cannabis sativa L. subsp. sativa) as an economic crop for fiber. Therefore, the utilizing feasibility of hemp leaves, a by-product of post-harvest hemp fiber production, would be considered in order to create added value to the business. The purpose of this research was to investigate the pharmacological effects of leaves extracts of four cultivars of Thai hemp, RPF1–4, including antioxidant, antibacterial, antifungal, and anti-inflammatory activities. The results revealed that the cannabinoid fraction of RPF4 possessed the highest antioxidant activities presenting as Trolox equivalent antioxidant capacity in the range of 88.02–180.84 mg/g. The extracts from RPF3 and RPF4 cultivars had antimicrobial activities against gram-positive bacteria and fungi (Candida albicans), but had no inhibitory effect on gram-negative bacteria. The methanolic crude extracts of RPF3 and RPF4 cultivars had the highest activities against Clostridium sporogenes with the minimal inhibitory concentration (MIC) of 976.5 ng/mL. Concerning the anti-inflammatory activity of hemp leaves extracts, it was found that methanolic crude extracts and cannabinoid fraction of all cultivars could suppress nitric oxide (NO) production in the inflammatory process, significantly reduce the pro-inflammatory genes, including iNOS, COX2, and IL-1B, and lower MMP3 and COL2A1 gene expression. Of those, the RPF4 extract had cannabinoids in a rather high amount and tetrahydrocannabivarin (THCV) that exerted the highest anti-inflammatory activity comparable to dexamethasone. The study results are beneficial for using hemp leaves from post-harvest fiber production as herbal products. However, in vivo studies of toxicity and efficacy of those pharmacological activities should be further performed.

References

Johnson R. Defining hemp: a fact sheet. Congressional Research Service. [online]. 2019; [cited 2022 Oct 23]; [12 screens]. Available from: URL: https://crsreports.congress.gov/product/pdf/R/R44742.

Clarke RC, Watson DP. Cannabis and natural Cannabis medicine. In: ElSohly MA, editor. Marijuana and the Cannabinoids. New Jersey: Humana Press; 2007. p. 1-16.

Brenneisen R. Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In: ElSohly MA, editor. Marijuana and the Cannabinoids. New Jersey: Humana Press; 2007. p. 17-49.

Department of Justice Parliamentary Counsel’s Office. Industrial Hemp Amendment Act 2018 No.15 of 2018. [online]. 2018; [cited 2022 Oct 23]; [8 screens]. Available from: URL: https://www.legislation.wa.gov.au/legislation/statutes.nsf/RedirectURL?OpenAgent&query=mrdoc_41245.pdf.

ประกาศคณะกรรมการควบคุมยาเสพติดให้โทษ เรื่อง กำหนดลักษณะกัญชง (Hemp) พ.ศ. 2562. ราชกิจจานุเบกษา เล่ม 136 ตอนพิเศษ 264 ง (วันที่ 24 ตุลาคม 2562). หน้า 7.

Dabrowska A, Green VR, Johnson R, Sacco LN. FDA regulation of cannabidiol (CBD) consumer products: overview and considerations for Congress. Congressional Research Service. [online]. 2020; [cited 2022 Oct 23]; [33 screens]. Available from: URL: https://crsreports.congress.gov/product/pdf/R/R46189.

Stott CG, Guy GW. Cannabinoids for the pharmaceutical industry. Euphytica 2004; 140: 83-93.

Pertwee RG. Cannabinoids and multiple sclerosis. Pharmacol Ther 2002; 95: 165-74.

Baker D, Pryce G, Giovannoni G, Thompson AJ. The therapeutic potential of cannabis. Lancet Neurol 2003; 2: 291-8.

Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2006; 66: 234-46.

Borgelt LM, Franson KL, Nussbaum AM, Wang GS. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 2013; 33(2): 195-209.

Svízenská I, Dubový P, Sulcová A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures--a short review. Pharmacol Biochem Behav 2008; 90: 501-11.

Fukuda S, Kohsaka H, Takayasu A, Yokoyama W, Miyabe C, Miyabe Y, et al. Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis. BMC Musculoskelet Disord 2014; 15: 275. (10 pages).

Wilkinson JD, Williamson EM. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatol Sci 2007; 45: 87-92.

Zheng D, Bode AM, Zhao Q, Cho YY, Zhu F, Ma WY, et al. The cannabinoid receptors are required for ultraviolet-induced inflammation and skin cancer development. Cancer Res 2008; 68(10): 3992-8.

Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson's disease. Neurobiol Dis 2005; 19: 96-107.

Mechoulam R, Sumariwalla PF, Feldmann M, Gallily R. Cannabinoids in models of chronic inflammatory conditions. Phytochem Rev 2005; 4: 11-8.

Gaffal E, Cron M, Glodde N, Bald T, Kuner R, Zimmer A, et al. Cannabinoid 1 receptors in keratinocytes modulate proinflammatory chemokine secretion and attenuate contact allergic inflammation. J Immunol 2013; 190(10): 4929-36.

Albanesi C. Keratinocytes in allergic skin diseases. Curr Opin Allergy Clin Immunol 2010; 10: 452-6.

Nissen L, Zatta A, Stefanini I, Grandi S, Sgorbati B, Biavati B, et al. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010; 81(5): 413-9.

Martinenghi LD, Jonsson R, Lund T, Jenssen H. Isolation, purification, and antimicrobial characterization of cannabidiolic acid and cannabidiol from Cannabis sativa L. Biomolecules 2020; 10: 900. (16 pages).

Duangnin N, Klangjorhor J, Tipparat P, Pinmanee S, Phitak T, Pothacharoen P, et al. Anti-inflammatory effect of methanol extracts of hemp leaf in IL-1β -induced synovitis. Trop J Pharm Res 2017; 16(7): 1553-63.

Meyer M, Müller AK, Yang J, Sulcova J, Werner S. The role of chronic inflammation in cutaneous fibrosis: fibroblast growth factor receptor deficiency in keratinocytes as an example. J Investig Dermatol Symp Proc 2011; 15: 48-52.

Tipparat P. Factors affecting cannabinoid contents for classification of hemp (Cannabis sativa L.) in Northern Thailand [dissertation]. Chiang Mai: Graduate school, Chiang Mai University; 2014.

Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010; 71: 2058-73.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radical Biol Med 1999; 26: 1231-7.

Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss u Technol 1995; 28: 25-30.

Benzei IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the Frap assay. Anal Biochem 1996; 239: 70-6.

Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology [online]. 2009; [cited 2022 Feb 1]; [23 screens]. Available from: URL: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45: 493-6.

M07-A9: Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

Murakami A, Miyamoto M, Ohigashi H. Zerumbone, an anti-inflammatory phytochemical, induces expression of proinflammatory cytokine genes in human colon adenocarcinoma cell lines. Biofactors 2004; 21(1-4): 95-101.

Yoon WJ, Ham YM, Kim SS, Yoo BS, Moon JY, Baik JS, et.al. Suppression of pro-inflammatory cytokines, iNOS and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. EurAsia J BioSci 2009; 3: 130-43.

Phitak T, Pothacharoen P, Settakorn J, Poompomol W, Caterson B, Kongtawelert P. Chondroprotective and anti-inflammatory effects of sesamin. Phytochemistry 2012; 80: 77-88.

สริตา ปิ่นมณี. ขึ้นทะเบียนพันธุ์กัญชง (Hemp) สำคัญอย่างไร?. [ออนไลน์์]. 2564; [สืบค้น 14 พ.ค. 2566]; [5 หน้า]. เข้าถึงได้ที่: URL: https://www.hrdi.or.th/Articles/Detail/1482.

Hillig KW. A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochem Systemat Ecol 2004; 32: 875-91.

Tipparat P, Kunkaew W, Julsrigival S, Pinmanee S, Natakankitkul S. Classification of cannabis plants grown in Northern Thailand using physico-chemical properties. J Nat Sci Res 2014; 4(4): 46-54.

Cásedas G, Moliner C, Maggi F, Mazzara E, López V. Evolution of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents. Front Pharmacol. [online]. 2022; [cited 2022 Nov 8]; [11 screens]. Available from: URL: https://www.frontiersin.org/articles/10.3389/fphar.2022.1009868/pdf.

Cantele C, Bertolino M, Bakro F, Giordano M, Jedryczka M, Cardenia V. Antioxidant effects of hemp (Cannabis sativa L.) inflorescence extract in stripped linseed oil. Antioxidants. [online]. 2020; [cited 2022 Nov 8]; [18 screens]. Available from: URL: https://www.mdpi.com/2076-3921/9/11/1131/pdf?version=1605515769.

Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, et.al. Antibacterial cannabinoids from Cannabis sativa: a structure−activity study. J Nat Prod 2008; 71: 1427-30.

Kaur S, Sharma C, Chaudhry S, Aman R. Antimicrobial potential of three common weeds of kurukshetra: an in vitro study. Res J Microbiol 2015; 10(6): 280-7.

Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005; 100: 80-4.

Anil SM, Peeri H, Kolti H. Medical cannabis activity against inflammation: active compounds and modes of action. Front Pharmacol. [online]. 2022; [cited 2022 Nov 8]; [9 screens]. Available from: URL: https://www.frontiersin.org/articles/10.3389/fphar.2022.908198/pdf.

Bolognini D, Costa B, Maione S, Comelli F, Marini P, Di Marzo V, et al. The plant cannabinoid Δ9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br J Pharmacol. [online]. 2010; [cited 2022 Nov 8]; [11 screens]. Available from: URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931567/pdf/bph0160-0677.pdf.

Romano B, Pagano E, Orlando P, Capasso R, Cassio MG, Pertwee R, et al. Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacol Res 2016; 113: 199-208.

Downloads

Published

22-09-2023

How to Cite

1.
Tipparat P, Kongtawelert P, Duangnil N, Julsrigivan S, Juntranimit P, Pinmanee S. Anti-inflammatory Activity on Skin Cells, Antibacterial and Antifungal Activities of Methanolic Thai Hemp Leaves Extracts: Anti-inflammatory, Antibacterial and Antifungal Activities of Thai Hemp Leaves Extracts. ว กรมวิทย พ [internet]. 2023 Sep. 22 [cited 2025 Dec. 9];65(3):145-68. available from: https://he02.tci-thaijo.org/index.php/dmsc/article/view/260063

Issue

Section

Original Articles