Effectiveness of the Nongmamong Blood Glucose Meter IQC Online Program on the Accuracy of Portable Glucose Meters in Nongmamong District Health Network, Chainat, Thailand

Effectiveness of the Nongmamong Blood Glucose Meter IQC Online Program

Authors

  • Supattra Suwansiri Nongmamong Hospital, Chainat
  • Wittaya Juntaroje Nongmamong Hospital, Chainat

Keywords:

Portable blood glucose meter, Internal quality control, Nongmamong IQC Online Program

Abstract

         Internal quality control (IQC) of portable blood glucose meters is critical for ensuring the accuracy of test results, particularly in primary and secondary healthcare settings where personnel diversity may contribute to potential errors. This retrospective descriptive study aimed to evaluate the effectiveness of the Nongmamong Blood Glucose Meter IQC Online Program, a system that records real-time data and performs IQC assessments. Data were collected over three fiscal years (2022–2024) from 12 healthcare facilities in Nongmamong District, Chai Nat Province, Thailand, resulting in a total of 1,214 records. Descriptive and inferential statistics were applied, including Spearman’s Rank Correlation, Mann–Whitney U Test, Kruskal–Wallis H Test, and Linear Regression analyses. The average IQC deviation significantly decreased from 9.01% in 2022 to 5.90% in 2024 (p < 0.001, r = 0.421). Frequency of system usage was positively correlated with lower IQC deviation (rs = 0.366, p = 0.016). Simple linear regression showed that each additional use of the program predicted a 0.044% reduction in IQC deviation (R² = 0.407, p = 0.026), while temporal analysis found a 2.65% lower deviation in the later period compared to the earlier phase (R² = 0.118, p < 0.001). No significant difference was found between the hospitals and primary care units (p = 0.061), but a significant variation was observed among the 12 facilities (H = 94.70, p < 0.001, η² = 0.141). These findings demonstrated that the program effectively reduces IQC deviation and has potential for scalable application across all levels of the healthcare system. However, continual monitoring of other influencing factors such as staff training, equipment maintenance, and supervision is recommended to ensure sustainable quality improvement.

References

Roglic G. WHO Global report on diabetes: a summary. Int J Noncommunicable Dis 2016; 1(1): 3–8.

American Diabetes Association. Standards of medical care in diabetes—2023. Diabetes Care. [serial online]. 2023; [cited 2025 Apr 22]; 46(Suppl 1): [40 screens]. Available from: URL: https://diabetesjournals.org/care/issue/46/Supplement_1.

ศิริวรรณ พิทยรังสรรค์. การจัดบริการผู้ป่วยเบาหวานในชุมชน. ว สาธารณสุขชุมชน 2562; 15(3): 23–30.

Rebel A, Rice MA, Fahy BG. The accuracy of point-of-care glucose measurements. J Diabetes Sci Technol. [serial online]. 2012; [cited 2025 Apr 20]; 6(2): [16 screens]. Available from: URL: https://journals.sagepub.com/doi/10.1177/193229681200600228.

Ukpe II, Adewole A, Akintunde AA. Advancing internal quality control in point-of-care testing: a prospective study of rural clinics in Sub-Saharan Africa. Afr J Lab Med 2025; 14(1): a2045.

Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57(6): e1–e47.

พัชรี สรรพกิจ. คุณภาพการตรวจวัดระดับน้ำตาลโดยบุคลากรสาธารณสุขในสถานีอนามัย. ว วิชาการสาธารณสุข. 2560; 46(5): 520–8.

ศุภรัตน์ แสงสุข. การใช้เครื่องตรวจน้ำตาลในเลือดโดย อสม. ความถูกต้องและผลต่อการตัดสินใจทางคลินิก. ว พยาบาลศาสตร์ 2563; 38(2): 115–26.

Clinical and Laboratory Standards Institute (CLSI). POCT12-A3: Point-of-care blood glucose testing in acute and chronic care facilities; approved guideline—Third edition. Wayne, PA.: CLSI; 2013.

ComplianceOnline. Quality control laboratory compliance - documentation and record - keeping explained. [online]. [cited 2025 Apr 29]; [12 screens]. Available from: URL: https://www.complianceonline.com/resources/quality-control-laboratory-compliance-documentation-and-record-keeping-explained.html.

จิราพร โพธิ์ทอง. การประยุกต์ระบบสารสนเทศในการพัฒนางานควบคุมคุณภาพในสถานีอนามัย. ว เทคโนโลยีสารสนเทศทางสุขภาพ 2561; 10(1): 45–56.

Buntin MB, Burke MF, Hoaglin MC, Blumenthal D. The benefits of health information technology: a review of the recent literature shows predominantly positive results. Health Aff 2011; 30(3): 464–71.

สุพัตรา สุวรรณศิริ, วิทยา จันทโรจน์. ผลของการใช้โปรแกรม Nongmamong Blood Glucose Meter IQC Online ในการบริหารจัดการระบบควบคุมคุณภาพเครื่องตรวจวัดน้ำตาลในเลือดชนิดพกพาในเครือข่ายสุขภาพอําเภอหนองมะโมง จังหวัดชัยนาท. ว กรมวิทย พ 2568; 67(1): 135–48.

Rauch CA, Nichols JH. Laboratory accreditation and inspection. Clin Lab Med 2007; 27(4): 845–58.

Nam M, Song DY, Song SH, Roh EY, Shin S, Park KU, et al. Performance evaluation of immunoassay for infectious diseases on the Alinity i system. J Clin Lab Anal 2021; 35(3): e23671. (7 pages).

Nichols JH, Alter D, Chen Y, Isbell TS, Jacobs E, Moore N, et al. AACC guidance document on best practices for quality control in point-of-care testing. [online]. 2020; [cited 2025 Apr 24]; [20 screens]. Available from: URL: https://myadlm.org/science-and-research/academy-guidance/management-of-point-of-care-testing.

Wikipedia. Spearman's rank correlation coefficient. [online]. 2025; [cited 2025 Apr 24]. Available from: URL: https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient.

Nachar N. The Mann–Whitney U: a test for assessing whether two independent samples come from the same distribution. TQMP [serial online]. 2008; [cited 2025 Apr 24]; 4(1): [8 screens]. Available from: URL: https://www.tqmp.org/RegularArticles/vol04-1/p013/p013.pdf.

Technology Networks. Mann–Whitney U test: assumptions and example. [online]. 2024; [cited 2025 Apr 24]. Available from: URL: https://www.technologynetworks.com/informatics/articles/mann-whitney-u-test-assumptions-and-example-363425.

Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2010; 107(44): 776–82.

Grotenhuis MT, Thijs P. Dummy variables and their interactions in regression analysis: examples from research on body mass index. arXiv. [preprint online]. 2015; [cited 2025 Apr 24]; [22 screens]. Available from: URL: https://arxiv.org/abs/1511.05728.

Jaber MJ, Bindahmsh AA, Abu Dawwas MA, du Preez SE, Alshodukhi AM, Alateeq IS, et al. Obstacles and challenges affecting quality indicators in a complex tertiary emergency center. Glob J Qual Saf Healthc. [serial online]. 2024; [cited 2025 Apr 24]; 7(4): [13 screens]. Available from: URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554397.

Reißmann S, Guliani M, Wirth T, Groneberg DA, Harth V, Mache S. Psychosocial working conditions and violence prevention climate in German emergency departments - a cross-sectional study. BMC Emerg Med. [serial online]. 2025; [cited 2025 Apr 24]; 25(1): [22 screens]. Available from: URL: https://bmcemergmed.biomedcentral.com/articles/10.1186/s12873-024-01155-y.

Best JW, Kahn JV. Research in education. 10th ed. Boston: Pearson Education; 2006. p. 284.

Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. p. 79–81.

Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci 2014; 21(1): 19–25.

Mathew TK, Zubair M, Tadi P. Blood glucose monitoring In: StatPearls. [online]. 2023; [cited 2025 Apr 29]; [8 screens]. Available from: URL: https://www.ncbi.nlm.nih.gov/books/NBK555976.

Rghioui A, Lloret J, Harane M, Oumnad A. A smart glucose monitoring system for diabetic patient. Electronics. [serial online]. 2020; [cited 2025 Apr 29]; 9(4): 678. [10 screens]. Available from: URL: https://doi.org/10.3390/electronics9040678.

Frost J. How to interpret R-squared in regression [online]. Statistics by Jim; 2020 [cited 2025 May 1]; [5 screens]. Available from: URL: https://statisticsbyjim.com/regression/interpret-r-squared-regression.

Freckmann G, Schmid C, Baumstark A, Rutschmann M, Haug C, Heinemann L. Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy. J Diabetes Sci Technol 2015; 9(4): 885–94.

Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 2013; 29(7): 1645–60.

Hess DR. Retrospective studies and chart reviews. Respir Care 2004; 49(10): 1171–4.

Delgado A, Llorca J. Statistical power, sample size, and their reporting in clinical laboratory science research. Clin Lab Sci. [serial online]. 2012; [cited 2025 May 4]; 25(2): [6 screens]. Available from: URL: https://journals.sagepub.com/doi/10.29074/ascls.25.2.78.

Song JW, Chung KC. Observational studies: cohort and case-control studies. Plast Reconstr Surg 2010; 126(6): 2234–42.

Hudspeth M, Kaplow R. Point-of-care testing in diabetes management: improved clinical outcomes and reduced visits. Clin Diabetes. 2017; 35(2): 96–101.

Bui TC, Pham TTT, Nguyen LT, et al. Impact of point-of-care HbA1c testing on clinical decision making and outcomes in diabetes management: a systematic review and meta-analysis. J Clin Endocrinol Metab 2021; 106(8): e3161–73.

Wexler DJ, Grant RW, Wittenberg E, et al. Impact of real-time point-of-care testing of HbA1c on diabetes management: a randomized controlled trial. Diabetes Care. 2020; 43(7): 1504–10.

Downloads

Published

24-09-2025

How to Cite

1.
Suwansiri S, Juntaroje W. Effectiveness of the Nongmamong Blood Glucose Meter IQC Online Program on the Accuracy of Portable Glucose Meters in Nongmamong District Health Network, Chainat, Thailand: Effectiveness of the Nongmamong Blood Glucose Meter IQC Online Program. ว กรมวิทย พ [internet]. 2025 Sep. 24 [cited 2026 Feb. 5];67(3):417-38. available from: https://he02.tci-thaijo.org/index.php/dmsc/article/view/275415

Issue

Section

Original Articles