เครื่องมือประเมินการเฝ้าระวังและป้องกันการเข้าสู่ภาวะวิกฤตของผู้ป่วย

Main Article Content

พิศาล ชุ่มชื่น พบ.,
นิตยศรี ดวงอาทิตย์ พย.บ.,

บทคัดย่อ

เครื่องมือประเมินการเฝ้าระวังและป้องกันการเข้าสู่ภาวะวิกฤตของผู้ป่วย (early warning system; EWS) ถูกนำมาใช้ในการวัดและแบ่งประเภทผู้ป่วย ซึ่งกำหนดคะแนนตามหัวข้อการประเมิน ค่าที่ได้จากหัวข้อการประเมินจะทำนายความเสี่ยงของผู้ป่วยโดยเฉพาะอย่างยิ่งอัตราตาย และการรับไว้ในหอผู้ป่วยหนัก โดยมีจุดมุ่งหมายเพื่อระบุความเสี่ยง ให้ได้ตั้งแต่แรกว่า ผู้ป่วยรายใดจะมีอาการทรุดลง และกระตุ้นให้เกิดการดูแลที่เหมาะสมอย่างทันท่วงที


การเลือกใช้ EWS ควรพิจารณาจากหัวข้อหรือองค์ประกอบการประเมิน วิธีการคำนวณ ทรัพยากรระบบ เมื่อนำไปใช้แล้วสร้างความมั่นใจในการปฏิบัติในระดับสูง และการผูกเข้ากับระดับการขอความช่วยเหลือ จากผู้ชำนาญกว่าเพื่อให้มีศักยภาพสูงสุดในการปรับปรุงผลลัพธ์ของผู้ป่วย


บทความนี้นําเสนอเหตุผลการใช้ การพัฒนาช่วงแรก ประเภทและรูปแบบของ EWS ที่นิยมใช้ และแนวคิดการนำ EWS มาใช้ให้เหมาะสมกับบริบทของแต่ละโรงพยาบาลต่อไป

Downloads

Download data is not yet available.

Article Details

การอ้างอิงบทความ
ประเภทบทความ
บทความฟื้นวิชา

เอกสารอ้างอิง

1. Saisamorn C. Patient Safety and Quality of Nursing Service [Internet]. [cited 2020 Sep 18]. Available from: https://he01.tci-thaijo.org/index.php/JRTAN/article/view/25158/21420
2. NHS England. Introducing National Patient Safety Alerts and the role of the National Patient Safety Alerting Committee. [cited 2020 Aug 20]. Available from: https://www.england.nhs.uk/patient-safety/national-patient-safety-alerting-committee/
3. National Patient Safety Agency. The National Patient Safety Agency annual report and accounts 2009 to 2010. England: National Patient Safety Agency; 2010.
4. Killeen TK, Back SE, Brady KT. Implementation of integrated therapies for comorbid post-traumatic stress disorder and substance use disorders in community substance abuse treatment programs. Drug Alcohol Rev. 2015; 34(3): 234–41.
5. Saab MM, McCarthy B, Andrews T, et al. The effect of adult Early Warning Systems education on nurses’ knowledge, confidence and clinical performance: A systematic review. J Adv Nurs. 2017;73(11):2506–21.
6. Cioffi J. Nurses’ experiences of making decisions to call emergency assistance to their patients. J Adv Nurs. 2000;32(1):108–14.
7. Guidelines: Prevention of cardiac arrest and decisions about CPR | Resuscitation Council UK. [cited 2020 Aug 24]. Available from: https://www.resus.org.uk/library/2015-resuscitation-guidelines/prevention-cardiac-arrest-and-decisions-about-cpr
8. Morgan R, Williams F, Wright M. An early warning scoring system for detecting developing critical illness. 8th nd: Clin Intensive Care; 1997: 100.
9. Jacques T, Harrison GA, McLaws ML, et al. Signs of critical conditions and emergency responses (SOCCER): A model for predicting adverse events in the inpatient setting. Resuscitation. 2006;69(2):175–83.
10. Barlow GD, Nathwani D, Davey PG. Standardised early warning scoring system. Clin Med (Lond). 2006;6(4).
11. Shyamasunder AH, Abraham P. Measuring TSH receptor antibody to influence treatment choices in Graves’ disease. Clin Endocrinol (Oxf). 2017;86(5):652-7.
12. Cuthbertson BH, Boroujerdi M, McKie L, et al. Can physiological variables and early warning scoring systems allow early recognition of the deteriorating surgical patient?. Crit Care Med. 2007;35(2):402–9.
13. Kyriacos U, Jelsma J, Jordan S. Record review to explore the adequacy of post-operative vital signs monitoring using a local modified early warning score (mews) chart to evaluate outcomes. Vol. 9, PLoS ONE. Public Library of Science; 2014 [cited 2020 Aug 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/24498075/
14. Kyriacos U, Jelsma J, James M, Jordan S. Monitoring vital signs: Development of a Modified Early Warning Scoring (Mews) system for general wards in a developing country. PLoS One. 2014;9(1):e87073.
15. College of Physicians R. National Early Warning Score (NEWS) Standardising the assessment of acute-illness severity in the NHS [Internet]. 2012 [cited 2020 Aug 15]. Available from: www.rcplondon.ac.uk
16. Acutely ill adults in hospital: recognising and responding to deterioration Clinical guideline [Internet]. 2007 [cited 2020 Jul 22]. Available from: www.nice.org.uk/guidance/cg50
17. National Early Warning Score [Internet]. 2013 [cited 2020 Aug 15]. Available from: www.patientsafetyfirst.ie
18. TeamSTEPPS® Rapid Response Systems Guide | Agency for Health Research and Quality [Internet]. [cited 2020 Aug 15]. Available from: https://www.ahrq.gov/teamstepps/rrs/index.html
19. Churpek MM, Yuen TC, Edelson DP. Risk stratification of hospitalized patients on the wards. Chest. 2013;143(6):1758–65.
20. Wang Y-M, Wei T-T, Hou M, et al. Comparative research on the prognostic ability of improved early warning and APACHE II evaluation for hospitalized patients in the emergency department. Chinese Nurs Res. 2017;4(1):38–42.
21. Evran T, Serin S, Gürses E, Sungurtekin H. Various scoring systems for predicting mortality in Intensive Care Unit. Niger J Clin Pract. 2016;19(4):530–4.
22. Cattermole GN, Mak SKP, Liow CHE, Ho MF, Hung KYG, Keung KM, et al. Derivation of a prognostic score for identifying critically ill patients in an emergency department resuscitation room. Resuscitation. 2009;80(9):1000–5.
23. Cetınkaya HB, Koksal O, Sigirli D, Leylek EH, Karasu O. The predictive value of the modified early warning score with rapid lactate level (ViEWS-L) for mortality in patients of age 65 or older visiting the emergency department. Intern Emerg Med. 2017;12(8):1253–7.
24. Cattermole GN, Liow ECH, Graham CA, et al. THERM: the Resuscitation Management score. A prognostic tool to identify critically ill patients in the emergency department. [cited 2020 Aug 15]; Available from: http://dx.doi.org/10.1136/
25. Bulut M, Cebicci H, Sigirli D, et al. The comparison of modified early warning score with rapid emergency medicine score: a prospective multicentre observational cohort study on medical and surgical patients presenting to emergency department. Emerg Med J. 2014;31(6):476-81.
26. Subbe CP, Kruger M, Rutherford P, et al. Validation of a modified early warning score in medical admissions. QJM - Mon J Assoc Physicians. 2001;94(10):521–6.
27. Alam N, Hobbelink EL, van Tienhoven AJ, et al. The impact of the use of the Early Warning Score (EWS) on patient outcomes: A systematic review. Vol. 85, Resuscitation. Elsevier Ireland Ltd; 2014.p. 587–94.
28. Wuytack F, Meskell P, Conway A, et al. The effectiveness of physiologically based early warning or track and trigger systems after triage in adult patients presenting to emergency departments: a systematic review. BMC Emerg Med. 2017;17(1):38.
29. Downey CL, Tahir W, Randell R, et al. This is a repository copy of Strengths and limitations of Early Warning Scores: a systematic review and narrative synthesis.2 more authors) (2017) Strengths and limitations of Early Warning Scores: a systematic review and narrative synthesis. 2017; Available from: http://eprints.whiterose.ac.uk/121108/
30. Gerry S, Bonnici T, Birks J, et al. Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. BMJ. 2020;369:m1501.
31. Christensen D, Jensen NM, Maaløe R, et al. Nurse-administered early warning score system can be used for emergency department triage. Dan Med Bull. 2011;58(6):A4221.
32. Dundar ZD, Karamercan MA, Ergin M, et al. Rapid Emergency Medicine Score and HOTEL Score in Geriatric Patients Admitted to the Emergency Department. Int J Gerontol. 2015;9(2):87–92.
33. Wheeler I, Price C, Sitch A, et al. Early Warning Scores Generated in Developed Healthcare Settings Are Not Sufficient at Predicting Early Mortality in Blantyre, Malawi: A Prospective Cohort Study. Salluh JIF, editor. PLoS One. 2013;8(3):e59830.
34. Preece MHW, Horswill MS, Hill A, et al. The Development of the Adult Deterioration Detection System (ADDS) Chart. St Lucia, QLD: School of Psychology, The University of Queensland; 2010.
35. เอกสารประกอบการประชุม มอบนโยบายการดำเนินงานของกระทรวงสาธารณสุข ปี 2563 | กองยุทธศาสตร์และแผนงาน [Internet]. [เข้าถึงเมื่อ 18 กันยายน 2563]. เข้าถึงได้จาก: http://bps.moph.go.th/new_bps/policy_doc2563
36. Churpek MM, Zadravecz FJ, Winslow C, et al. Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients. Am J Respir Crit Care Med. 2015;192(8):958–64.
37. Singer M, Deutschman CS, Seymour C, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016; 315(8): 801–810. doi: 10.1001/jama.2016.0287
38. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA - J Am Med Assoc. 2016;315(8):762–74.
39. McLymont N, Glover GW. Scoring systems for the characterization of sepsis and associated outcomes. Ann Transl Med. 2016;4(24):527.
40. Brink A, Alsma J, Verdonschot RJCG, et al. Predicting mortality in patients with suspected sepsis at the Emergency Department; A retrospective cohort study comparing qSOFA, SIRS and National Early Warning Score. PLoS One. 2019 Jan 1;14(1):e0211133
41. Taniguchi T, Tsuha S, Takayama Y, et al. Shaking chills and high body temperature predict bacteremia especially among elderly patients. Springerplus. 2013;2(1):1–6.
42. Tokuda Y, Miyasato H, Stein GH, et al. The degree of chills for risk of bacteremia in acute febrile illness. Am J Med. 2005;118(12):1417.
43. Taniguchi T, Tsuha S, Shiiki S, et al High positivity of blood cultures obtained within two hours after shaking chills. 2018; Available from: https://doi.org/10.1016/j.ijid.2018.07.020
44. Filho RR, Rocha LL, Corrêa TD, et al. Blood Lactate Levels Cutoff and Mortality Prediction in Sepsis—Time for a Reappraisal? a Retrospective Cohort Study. Shock. 2016;46(5):480–5.
45. Mitra B, Roman C, Charters KE, et al. Lactate, bicarbonate and anion gap for evaluation of patients presenting with sepsis to the emergency department: A prospective cohort study. Emerg Med Australas. 2020;32(1):20–4.
46. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke. Stroke. 2019;50(12):e344–418.
47. Kleindorfer DO, Miller R, Moomaw CJ, et al. Designing a Message for Public Education Regarding Stroke Does FAST Capture Enough Stroke? 2007; Available from: http://stroke.ahajournals.org
48. Hodgson CS. To FAST or not to FAST?. Vol. 38, Stroke. Lippincott Williams & Wilkins; 2007. p. 2631–2.
49. Tirschwell D, Schubert G, Cobb L, Copass M. Population-based comparison of the Cincinnati and Los Angeles prehospital stroke scales. Stroke. 2018;49(3):565–72.
50. Løvlien M, Johansson I, Hole T, et al. Early warning signs of an acute myocardial infarction and their influence on symptoms during the acute phase, with comparisons by gender. Gend Med. 2009;6(3):444–53.
51. Hofgren C, Karlson BW, Herlitz J. Prodromal symptoms in subsets of patients hospitalized for suspected acute myocardial infarction. Hear Lung - J Acute Crit Care. 1995;24(1):3–10.
52. Barstow C, Rice M, Mcdivitt JD. Acute Coronary Syndrome: Diagnostic Evaluation [Internet]. Vol. 95, American Family Physician. 2017 Feb [cited 2020 Sep 7]. Available from: www.choosingwisely.org.
53. Canto JG, Goldberg RJ, Hand MM, et al. Symptom presentation of women with acute coronary syndromes: Myth vs reality. Vol. 167, Archives of Internal Medicine. American Medical Association; 2007. p. 2405–13.
54. Fanaroff AC, Rymer JA, Goldstein SA, et al. Does this patient with chest pain have acute coronary syndrome?: The rational clinical examination systematic review. Vol. 314, JAMA - Journal of the American Medical Association. American Medical Association; 2015. p. 1955–65.
55. Bularga A, Lee KK, Stewart S, et al. High-Sensitivity Troponin and the Application of Risk Stratification Thresholds in Patients with Suspected Acute Coronary Syndrome. Circulation. 2019;140(19):1557–68.
56. Gokhroo RK, Ranwa BL, Kishor K, Priti K, Ananthraj A, Gupta S, et al. Sweating: A Specific Predictor of ST-Segment Elevation Myocardial Infarction among the Symptoms of Acute Coronary Syndrome: Sweating in Myocardial Infarction (SWIMI) Study Group. Clin Cardiol. 2016;39(2):90–5.
57. Cervellin G, Rastelli G. The clinics of acute coronary syndrome. Ann Transl Med. 2016;4(10):191.
58. Haniffa R, Isaam I, De Silva AP, et al. Performance of critical care prognostic scoring systems in low and middle-income countries: A systematic review. Crit Care. 2018;22(1):18.