Outcome and Successful Factors of Pediatric HIV Infection Treatment at Nakhonpathom Hospital, Thailand
Keywords:
pediatric HIV infection, antiretroviral therapyAbstract
Abstract
Objective: The purpose is to study the outcome and successful factors of pediatric HIV infection treatment at Nakhonpathom Hospital.
Method: A retrospective cohort study was carried out by recruiting HIV-infected children and adolescents 0 – 20 years between April 2001 – March 2020. Demographic data, clinical data and laboratory data were recorded. Data were analyzed by paired-t-test, chi-square and multivariate logistic regression with odds ratio at 95% confidence interval and p-value < .05 as statistical significance.
Result: A total of 167 HIV-infected children and adolescents were included. Female were 58.1%. The mean age at baseline was 7.4 4.1 years. Referred cases to the adult clinic and to other hospitals were 50.8%, remained cases at pediatric clinic were 19.8%, and loss to follow-up cases were 14.4%. Mortality rate was 15% (in 19 years). The majority (90.9%) received 2NRTI + NVP/EFV regimen and 62.2% have continued the same regimen. The outcomes were restoration of immunity (CD4 at baseline mean SD = 11.1 10.5%, increased to CD4 last = 20.8 11.0%), suppression viral load (VL > 1,000 copies/mm3 from 81.8% decreased to 46.2%, VL < 20 copies/ mm3 from 0% increased to 53.8%), and improvement of growth (weight and height at baseline median = 10 percentiles increased up to 20 and 40 percentiles respectively). Risk factors for mortality were five factors: 1) delayed initiation antiretroviral therapy (age < 5 – 15 years), odds ratio = 3.1, p- value = .044; 2) poor drug adherence (odds ratio was too high to calculation), p-value<.001; 3) low last CD4 level <20% (odds ratio was too high to calculation), p-value < .001; 4) last VL 20 copies/mm3, odds ratio = 2.43, p-value = .001; and 5) weight and height at baseline and last items < 3rd percentile, odds ratio = 13.62, 7.34, 20.52, and 20.23 respectively, all p-value < .001.
Conclusion: The trend of HIV-infected children has declined. Antiretroviral therapy induced immunity system recovery, suppressed viral load, and accelerated growth, as well as reduced morbidity and mortality. Factors contributing to improved therapeutic effect were good drug adherence and early antiretroviral therapy (at younger age, high precursor CD4 level, and before failure to thrive).
References
1. สำนักโรคเอดส์ วัณโรค และโรคติดต่อทางเพศสัมพันธ์ กรมควบคุมโรค. แนวทางการตรวจรักษาและป้องกันการติดเชื้อเอชไอวี ประเทศไทยปี 2560 (Thailand National Guidelines On HIV/AIDS Treatment and Prevention 2016). กรุงเทพฯ: สหมิตรพริ้นติ้งแอนด์พับลิสชิ่ง; 2560.
2. ศูนย์อำนวยการบริหารจัดการปัญหาเอดส์แห่งชาติ. มติการประชุมคณะกรรมการแห่งชาติว่าด้วย การป้องกันและแก้ไขปัญหาเอดส์ ปีงบประมาณ พ.ศ. 2555 - 2556. ใน เพชรศรี ศิรินิรันดร์, ทวีทรัพย์ ศิรประภาศิริ, วาสนา นิ่มวรพันธุ์, บรรณาธิการ. กรุงเทพฯ: หกหนึ่งเจ็ด; 2556: 4-5.
3. Diener L, Richardson BA, Chambers EP, et al. Growth reconstitution following antiretroviral therapy and nutritional supplementation: Systemic review and meta-analysis AIDS. 2015; 29(15): 2009-23. doi: 10.1097/QAD.0000000000000783. PMID: 26355573; PMCID: PMC4579534.
4. Liu E, Pimpin L, Shulkin M, et al. Effect of Zinc Supplementation on Growth Outcomes in Children under 5 yr of age. Nutrients. 2018; 10(3): 377. doi: 10.3390/nu 10030377
5. Jesson J, Koumakpai S, Diagne NR, et al. Effect of Age at Antiretroviral therapy Initiation on Catch-up Growth within the First 24 Monthly Among HIV-Infected Children in the JeDEA West African Pediatric Cohort. Pediatr Infect Dis J. 2015; 34(7): e 159-68.
doi: 10.1097/INF.0000000000000734.
6. Mc Grath CJ, Chung MH, Richardson BA, et al. Younger age at HAART Initiation is associated with more rapid growth reconstitution. AIDS. 2011; 25(3): 345-55.doi; 10.1097/QAD.Obo13e32834171db.
7. วิศัลย์ มูลศาสตร์, นฤภัค บุญฤทธิภัทร์, ศวิตา อิสสะอาด. ปัจจัยที่มีผลต่อภาวะล้มเหลวทางไวรัสขณะได้รับยา Lopinavir/ritonavir ในผู้ป่วยวัยรุ่น ณ สถาบันบำราศนราดูร. วารสารกุมารเวชศาสตร์. 2556; 52(1): 61-9.
8. Cauldbeck MB, O’Connor C, O’Connor MB, et al. Adherence to anti-retroviral therapy among HIV patients in Bangalore, India. AIDS Res Ther. 2009; 6: 7. doi: 10.1186/1742-6405-6-7.
9. Polisser J, Ametonou F, Arrive E, et al. Correlates of adherence to antiretroviral therapy in HIV-infected children in Lomé, Togo, West Africa. AIDS Behav. 2009; 13(1): 23-32. doi: 10.1007/s10461-008-9437-6.
10. Kawilapat S, Salvadori N, Ngo-Gians-Huong N, et al. Incidence and risk factors of loss to follow-up among HIV-Infected Children in an antiretroviral treatment program. PLoS ONE. 2019; 14(9): e0222082. doi: 10.1371/journal. pone.0222082.
11. Wanialwa DC, Obimbo EM, Farquhar C, et al. Predictors of Mortality in HIV1 Infected Children on Antiretroviral Therapy in Kenya: A Propective. BMC Pediatr. 2010; 10: 33. doi: 10.1186/1471-2431-10-33.
12. Koller M, Patel K, Chi BH, et al. Immunodeficiency in children starting antiretroviral therapy in low-, middle-, and high-income countries. J Acquir Immune Defic Syndr. 2015; 68(1): 62-72. doi: 10.1097/QAI.0000000000000380.
13. Braidy MT, Oleske JM, Williams PL, et al. Declines in MR and Changes in Causes of death in HIV-1-Infected Children during the HAART era. J Acquir Immune Defic Syndr. 2010; 53(1): 86. doi: 10.1097/QAI.0b013e3181b9869f.
14. Traisathit P, Delory T, Ngo-Giang-Huong N, et al. Brief Report: AIDS-Defining Events and Deaths in HIV-Infected Children and Adolescent on Antiretroviral: A14-year study in Thailand. J Acquir Immune Defic Syndr. 2018; 77(1): 17-22. doi: 10.1097/QAI. 0000000000001571 .
15. Johnson LF, Patrich M, Stephen C, et al. Steep Declines in Pediatric AIDs Mortality in South Africa, Despite Poor Progress Toward Pediatric Diagnosis and Treatment Targets. Pediatr Infect Dis J. 2020; 39(9): 843-8. doi: 10.1097/INF.0000000000002680.
16. Seth A, Malhotra RK, Gupta R, et al. Effect of Antiretroviral Therapy on Growth Parameters of Children with HIV Infection. Pediatr Infect Dis J. 2018; 37(1): 85-89.
Doi: 10.1097/1NF.00000000000017.
17. Dankner WM, Lindsey JC, Levin MJ, et al. Correlates of opportunistic infections in children infected with the human immunodeficiency virus managed before highly active antiretroviral therapy. Pediatr Infect Dis J. 2001; 20(1): 40-8. doi: 10.1097/00006454-200101000-00008.
18. Papi L, Menezes AC, Rocha H, et al. Prevalence of Lipodystrophy and risk factors for dyslipidemia in HIV-infected children in Brazil. Braz J Infect DIS. 2014; 18(4): 394.
19. Mofenson LM, Cohn J, Sacks E. Challenges in the Early Infant HIV Diagnosis and Treatment Cascade. JAIDS. 2020: 84(Suppl1); S1-S4. doi: 10.1097/OAJ.0000000000002366.
20. Desmonde S, Tanser F, Vreeman R, et al. Access to antiretroviral therapy in HIV-infected Children aged 0-19 years in the International Epidemiology Databases to Evaluate AIDS (IeDEA) Global Cohort Consortium, 2004-2015: A prospective cohort study. PLOS Med. 2018; 15(5): e1002565. doi: 10.1371/Journal.pmed:1002565.
21. Fernandez-Luis S, Nhampossa T, Fuente SL, et al. Pediatric HIV Care Cascade in Southern Mozambique: Missed Opportunities for Early ART and Re-engagement in Care. Pediatr Infect Dis J. 2020; 39(5): 429-34. doi: 10.1097/INF.0000000000002612.
22. Traisathit P, Urien S, Coeur SL, et al. Impact of antiretroviral treatment on height evolution of HIV infected children. BMC Pediatrics 2019; 19: 287.
23. Puthanakit T, Kerr SJ, Ananworanich J, et al. Pattern and Predictors of Immunologic Recovery in Human Immunodeficency Virus-Infected Children Receiving Non-Nucleoside Reverse Transcriptase Inhibitor-Based Highly Active Antiretroviral Therapy. Pediatr Infect Dis J. 2009. 28(6): 488-92. Doi: 10.1097/inf.0b013e318194eea6.
24. Tadesse BT, Foster BA, Latour E, et al. Predictors of Virologic Failure Among a Cohort of HIV-infected Children in Southern Ethiopia. Pediatr Infect Dis J. 2020. doi: 10.1097/INF.0000000000002898. [Online ahead of print].
25. Bunupuradah T, Sricharoenchai S, Hansudewechakul R, et al. Risk of First-line Antiretroviral Therapy Failure in HIV-infected Thai Children and Adolescents. Pediatr Infect Dis J. 2015; 34(3): e58-e62. doi: 10.1097/INF.0000000000000584.
26. Schroter J, Anelone A JN, Yates AJ, et al. Time to Viral Suppression in Perinatally HIV-Infected Infants Depends on the Viral Load and CD4 T-Cell Percentage at the Start of Treatment. JAIDS. 2020; 83(5): 522-9. doi: 10.1097/QAI.0000000000002291.
27. Benki-Nugent S, Wamalwa D, Langat A, et al. Comparison of development milestone attainment in early treated HIV-infected infants versus HIV-unexposed infants: a prospective cohort study BMC Pediatr. 2017; 17: 24. doi: 10.1186/s12887-017-0776-1.
Downloads
Published
How to Cite
Issue
Section
License
ลิขสิทธิ์บทความเป็นของผู้เขียนบทความ แต่หากผลงานของท่านได้รับการพิจารณาตีพิมพ์ลงวารสารแพทย์เขต 4-5 จะคงไว้ซึ่งสิทธิ์ในการตีพิมพ์ครั้งแรกด้วยเหตุที่บทความจะปรากฎในวารสารที่เข้าถึงได้ จึงอนุญาตให้นำบทความในวารสารไปใช้ประโยชน์ได้ในเชิงวิชาการโดยจำเป็นต้องมีการอ้างอิงถึงชื่อวารสารอย่างถูกต้อง แต่ไม่อนุญาตให้นำไปใช้ในเชิงพาณิชย์
