Evaluation of Synthetic Antimicrobial Peptides against Methicillin-Resistant Staphylococcus aureus

Authors

  • Nuanchawee Wetprasit Faculty of Science, Ramkhamhaeng University
  • Janthima Jaresitthikunchai National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathumthani
  • Narumon Phaonakrop National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathumthani
  • Sittiruk Roytrakul National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathumthani

Keywords:

Methicillin-resistant Stahylococcus aureus (MRSA), Peptide barcode, Synthetic peptides

Abstract

       In this study, nine peptides containing 6-25 amino acids residues with positive charge and 40-83% hydrophobicity were selected from an antimicrobial peptide database. All of them were chemically synthesized and evaluated for their antibacterial activity against Staphylococcus aureus ATCC 25923, methicillin-resistant Staphylococcus aureus (MRSA) DMST 20635, MRSA DMST 20637 and MRSA DMST 20654. It was found that KLKLLLLLKLK had effective antibacterial activity against all S. aureus. This peptide was then modified and yielded twelve peptides with different hydrophobicity and charges. In the antibacterial assay with these twelve synthetic peptides, KLKLKLKLKLK, LLLLLLKLK and LLLLLLK were found to have potent antibacterial activity against S. aureus ATCC 25923, MRSA DMST 20635 and MRSA DMST 20654 with IC50 values of 27.5-62.5 μg/ml. Furthermore, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis results showed that peptide barcodes of all S. aureus strains were significant different. The results from this study indicated that the different degree of methicillin-resistant S. aureus has an effect on difference in peptide barcode and difference in response to synthetic peptides. However, the antibiotic mechanism of these three modified peptides against MRSA should be further studied for development as therapeutic agents.

References

Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res 2019; 11(7): 3919-31.

Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276(11): 7806-10.

Ballardini N, Johansson C, Lilji G, Lindh M. Linde Y, Scheynius A, et al. Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eczema. Br J Dermatol 2009; 161(1): 40-7.

Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 2006; 12(6): 636-41.

Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996; 272(5258): 50-4.

Papagianni M. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 2003; 21(6): 465-99.

Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3): 238-50.

Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2007; 2(1): 1-33.

Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associates with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 1984; 158(2): 513-6.

Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999; 274(13): 8405-10.

Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 1999; 286(5444): 1561-5.

Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 2000; 68(3): 1664-71.

Stephan R, Cernela N, Ziegler D, Pfluger V, Tonolla M, Ravasi D, et al. Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry. J Microbiol Methods 2011; 87(2): 150-3.

Arpornsuwan T, Paveenkittiporn W, Jaresitthikunchai J, Roytrakul S. BAMP-28 antimicrobial peptide against different MALDI biotype of Carbapenam resistant Enterobacteriaceae. Int J Pept Res Ther 2018; 25(3): 951-60.

Shurko JF, Galega RS, Li C, Lee GC. Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus. J Antibiot 2018; 71(11): 971-4.

Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 2010; 1(2): 143-52.

Jiang Z, Vasil AI, Hale JD, Handcock REW, Vasil ML, Hodges RS. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 2008; 90(3): 369-83.

Gregory SM, Cavenaugh A, Journigan V, Pokorny A, Almeida PFF. A quatitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 2008; 94(5): 1667-80.

Mika JT, Moiset G, Cirac AD, Feliu L, Bardaji E, Planas M, et al. Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194. Biochim Biophys Acta 2011; 1808(9): 2197-205.

Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Bioperlymers 2000; 55(1): 4-30.

Alvarez-Bravo J, Kurata S, Natori S. Novel synthetic antimicrobial peptides effective against methicillin-resistant Staphylococcus aureus. Biochem J 1994; 302(Pt 2): 535-8.

Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47(8): 2538-44.

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, CLSI document M7-A7. 7th ed. Wayne, Pennsylvania; CLSI; 2006.

Almaaytah A, Tarazi S, Abu-Alhaijaa A, Altall Y, Alshar’i N, Bodoor K, et al. Enhanced antimicrobial activity of AamAP1-Lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals 2014; 7(5): 502-16.

Sato H, Feix JB. Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity. Antimicrob Agents Chemother 2008; 52(12): 4463-5.

Unubol N, Cinaroglu SS, Elmas MA, Akcelik S, Ildeniz ATO, Arbak S, et al. Peptide antibiotics developed by mimicking natural antimicrobial peptides. Clin Microbiol 2017; 6(4): 1-6.

Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol 2005; 52(3): 381-90.

Gutsmann T, Hagge SO, Larrick JW, Seydel U, Wiese A. Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids. Biophys J 2001; 80(6): 2935-45.

Skerlavaj B, Romeo D, Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 1990; 58(11): 3724-30.

Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 1993; 61(7): 2978-84.

Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1999; 1462(1-2): 11-28.

Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 2002; 269(19): 4799-810.

Gazit E, Boman A, Boman HG, Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipids vesicles. Biochemistry 1995; 34(36): 11479-88.

Christensen B, Fink J, Merrifield RB, Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 1988; 85(14): 5072-6.

Mohamed MF, Abdelkhalek A, Seleem MN. Evalution of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 2016; 6: 29707. (14 pages).

Zhu WL, Nan YH, Hahm KS, Shin SY. Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J Biochem Mol Biol 2007; 40(6): 1090-4.

Ouhara K, Komatsuzawa H, Kawai T, Nishi H, Fujiwara T, Fujiue Y, et al. Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. J Antimicrob Chemother 2008; 61(6): 1266-9.

Downloads

Published

30-06-2020

How to Cite

1.
Wetprasit N, Jaresitthikunchai J, Phaonakrop N, Roytrakul S. Evaluation of Synthetic Antimicrobial Peptides against Methicillin-Resistant Staphylococcus aureus. ว กรมวิทย พ [internet]. 2020 Jun. 30 [cited 2026 Feb. 5];62(2):59-75. available from: https://he02.tci-thaijo.org/index.php/dmsc/article/view/242962

Issue

Section

Original Articles