Radiation Doses Evaluation in Reduced-dose Technique Non-contrast CT KUB for Urinary Tract Stone Diagnosis

Main Article Content

Chanakan Suwanit

Abstract

Background: Urinary tract stone is a common health problem by the increasing incidence and recurrence rates. Currently non-contrast computed tomography of the KUB (CT KUB) has become the investigation of choice in the evaluation of KUB stone, but patients will receivehigh radiation exposure than another methods.
Objective: To assess the average radiation doses obtained from reduced-dose technique CT KUB for KUB stone evaluation.
Methods: An experimental study of 15 patients who underwent reduced-dose technique CT KUB (30-100 mA) from Jun 2020 – Oct 2020 and 47 patients who underwent standard-dose technique CT KUB (50-300 mA) from Jan 2016 - May 2020 at Prasat Hospital. The general and radiological data were collected and compared between two radiologic techniques.
Results: By using reduced-dose technique, patients will receivelower radiation doses in every BMI groups, which significantly lower in normal weight, overweight and obesity groups (p-value<0.001). The CTDIvol, DLP and effective dose were maximally decreased up to 41.7-54.1%, 49.2-56.4% and 49.2-56.4%, respectively, compared with standard-dose technique. The smallest stone was detected at 1 millimetresize. It also hadthe diagnostic result consistent with standard-dose, which Intra- and Inter-rater reliability were almost perfect.
Conclusion: Patients will receivethe lower radiation dose up to 50% by using reduced-dose non-contrast CT KUB (30-100 mA) with still remaining good image quality and had the diagnostic result consistent with standard-dose technique.
Keywords: KUB stone, Urinary tract stone, Urolithiasis, Low dose CT, Reduced-dose CT

Article Details

How to Cite
Suwanit, C. . (2021). Radiation Doses Evaluation in Reduced-dose Technique Non-contrast CT KUB for Urinary Tract Stone Diagnosis. MEDICAL JOURNAL OF SISAKET SURIN BURIRAM HOSPITALS, 36(1), 1–12. retrieved from https://he02.tci-thaijo.org/index.php/MJSSBH/article/view/250173
Section
Original Articles

References

Wells CC, Chandrashekar KB, Jyothirmayi GN. Kidney Stones: Current Diagnosis and Management. Clinician Rev 2012;22(2):31-37.

Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors Rev Urol 2010;12(2-3):e86-96. PMID: 20811557

Liu Y, Chen Y, Liao B, Luo D, Wang K, Li H, et al. Epidemiology of urolithiasis in Asia. Asian J Urol 2018;5(4):205-14. doi: 10.1016/j.ajur.2018.08.007.

Leusmann DB, Niggemann H, Roth S, von Ahlen H. Recurrence rates and severity of urinary calculi. Scand J Urol Nephrol 1995;29(3):279-83. doi: 10.3109/00365599509180576.

ปิยะรัตน์ โตสุโขวงศ์, ฉัตรชัย ยาจันทร์ทา, ทศพล ศศิวงศ์ภักดี, ชาญชัย บุญหล้า, เกรียง ตั้งสง่า. โรคนิ่วไต : พยาธิสรีระวิทยา การรักษา และการสร้างเสริมสุขภาพ. Chula Med J 2006;50(2):103-26.

Gervaise A, Gervaise-Henry C, Pernin M, Naulet P, Junca-Laplace C, Lapierre-Combes M. How to perform low-dose computed tomography for renal colic in clinical practice. Diagn Interv Imaging 2016;97(4):393-400. doi: 10.1016/j.diii.2015.05.013.

Ziemba JB, Matlaga BR. Epidemiology and economics of nephrolithiasis. Investig Clin Urol 2017;58(5):299-306. doi: 10.4111/icu.2017.58.5.299.

Rodger F, Roditi G, Aboumarzouk OM. Diagnostic Accuracy of Low and Ultra-Low Dose CT for Identification of Urinary Tract Stones: A Systematic Review Urol Int 2018;100(4):375-385. doi: 10.1159/000488062.

Sung MK, Singh S, Kalra MK. Current status of low dose multi-detector CT in the urinary tract. World J Radiol 2011;3(11):256-65. doi: 10.4329/wjr.v3.i11.256.

Albert JM. Radiation risk from CT: implications for cancer screening. AJR Am J Roentgenol. 2013 Jul;201(1):W81-7. doi: 10.2214/AJR.12.9226.

Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 2007;188(4):927-33. doi: 10.2214/AJR.06.0793.

Faiq SM, Naz N, Zaidi FB, Rizvi A. Diagnostic accuracy of ultrasound & X-Ray KUB in Ureteric Colic taking CT as gold standard. IJEHSR 2014;2(1):22-7.

Weisenthal K, Karthik P, Shaw M, Sengupta D, Bhargavan-Chatfield M, Burleson J, et al. Evaluation of Kidney Stones with Reduced-Radiation Dose CT: Progress from 2011-2012 to 2015-2016-Not There Yet. Radiology 2018;286(2):581-9. doi: 10.1148/radiol.2017170285.

Nagel HD. 3 CT parameters that influence the radiation dose. In: Track D, Gevenois PA, editors. Radiation dose from adult and pediatric multidetector computed tomography. 1st ed. Heidelberg: Springer; 2017:51-79.

Goldman LW.Principles of CT: radiation dose and image quality. J Nucl Med Technol 2007;35(4):213-25; quiz 226-8. doi: 10.2967/jnmt.106.037846.

Wang PI, Chong ST, Kielar AZ, Kelly AM, Knoepp UD, Mazza MB, et al. Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol 2012;198(4):778-84. doi: 10.2214/AJR.11.7405.

Bernard B. Fundamentals of Biostatistics. 5th. ed. Duxbery: Thomson learning; 2000:384-5.

Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA 2005;293(4):455-62. doi: 10.1001/jama.293.4.455.

Chan VO, McDermott S, Buckley O, Allen S, Casey M, O'Laoide R, et al. The relationship of body mass index and abdominal fat on the radiation dose received during routine computed tomographic imaging of the abdomen and pelvis. Can Assoc Radiol J 2012;63(4):260-6. doi: 10.1016/j.carj.2011.02.006.